SCOT Documentation
Release 3.8.1

Todd Bruner, Nick Georgieff

Aug 15, 2022

Contents

1 License

2 Installing SCOT

3 Important Update

3.1
32

33
34
35

Minimum System Requirements L Lo e e
System Preparation L e e e e e e
321 Ubuntu 14.04
322 Ubuntu 16.04and CENT 7 o o i i

Using install.shtoupgrade e e e
Configuration Files L e

4 POST Install Procedures

4.1
4.2
4.3

4.4

Migration o o e e e e e e e e e e e e e e e
SSLCerts o o e e e e e e
Configuration Files e e e e e e e e
43.1 scot.efgpl . . . e e e e e e
432 alert.efg.pl. . . . L e e
433 flaircfgpl e
434 game.cfg.pl
4.3.5 stretch.cfg.pl . ..
CRONIJObS . . . oo e e

5 Migration

6 Save Your Old Database

7 SCOT Feeding

7.1

7.2

Email Ingest

7.1.1 HTMLEmail e e e e e
REST interface o e e e e e e e e

8 Overview

8.1
8.2
8.3

Philosophy

Why Use SCOT o e e e e e e e

Terminology

O O 00032

29

31

33
33
33
34

37
37
37
38

83.1 IRT . . . e 38

8.3.2 AIGItgroups o i e e e e e e e e e e e e e 38

8.3.3 AlCItS e e e e e e 38

8.3.4 Events e e e e e e e e e 38

835 Entryo 39

8.3.6 Task e e 39

83.7 Entity . . . o e e e e e e e e e e e 39

8.3.8° Flair e e e e e 39

8.3.9 Intel e e e e e e e e 39
83.10 Guide e e e e e e 40
83.11 Signature e e e e 40

9 User Guide 41
0.1 VIBWS . . . o o e e e e e e e e e 41
O.1.1 List VIEW e e e e e e 41

9.1.2 Detaill VIiew e e e e e e e e e e e e 41

0.2 AlCIt . . . e e e e 41
9.3 AlertDetails e e e e e 43
0.4 EVENS e e e e e e e e 46
9.4.1 EventGrid VIEW e e e e e e 46

942 EventDetaill View L e e e e e e e e 46

9.5 Incident e e e e e e e e e e 49
9.6 Intel e e e e e e 49
0.7 Guide e e e e e e 49
0.8 Task. e e e e e e 49
0.9 SIgnature e e e e e e e 49
010 Tags . . o v v o e e e e e e e e e e 51
O0.11 Flair. e e e e e e e e e e 51
9.11.1 Whatthe heckis Flair? e 51
9.11.2 TheProcess e e e e e e e e 51
9.11.3 UserDefined Entity o e 52

0.12 EnNtities o o e e e e e e e e e e s 52
0.12.1 Entity TYPES . .« . o o e e e e e e e e e e e e e e e 52
9.12.2 Building Additional Entity Types 53

O0.13 PermiSsions i i e e e e e e e e e e e e e e e e e e e 53
9.13.1 Default Groups and OWNers it i i v e e 53
9.13.2 AdmIn Group v v i e e e e e e e e e e e e e e e e e e 53
9.13.3 Noteabout Group Names o v v it e e e e e e e e e e e 54

0.14 HotKeys i e e e e e e e e e e e 54
9.15 Posting a global notificaton: o e 54
10 Administration Guide 55
10.1 Backup o e e e e e e e 55
10.1.1 Manual Backup e 55

10.2 ReStOre o o e e e 56
10.2.1 Manual Restore e e e e e e e 56

103 SSLCerts . . . v v v e e e e e e e e e e 57
104 GeolP e s 57
10.5 Upgrading e e e 57
10.6 CRONENtries o e e e e e e e e e e 57
10.7 Daemons e e e e e e e e e e e e 58
10.8 LoggIng . . . v o o i e e e e e e e e e e e 58
10.9 Manual Password Reset for Local Auth 58

11 Developing For SCOT
11.1 SCOT Architecture o v vt e e et e e e e e e e e e e e e e e e e e e e
11.2 SCOT Directory Map« . o o it e e et e e e e e et e e e e e
11.3 SCOTREST APL. e e e e e
11.3.1 SCOT get APL. e e e e e e e e e
11.3.2 SCOT post API o e
11.3.3 SCOT put APL e e e e
11.3.4 SCOT delete API L e e e
11.4 SCOTEvent Queue i i i e e e e e e e e e e e e e e e

11.5 SCOT Server .
11.6 SCOTUI . ..

12 Signatures
12.1 Signature . . .

12.2 Signature Metadata L. e e e
12.2.1 Signature Body Options 0 0 i e e e e e e e e e e e

13 REVL Visualization Guide
13.1 Read-Eval-Viz-Loop o e e e e e e e e

13.2 Getting Started

13.3 Interacting with REVL 0 e e e
13.4 Using REVL with SCOT data et
13.5 Makeabarchart L e e

13.6 Event Timing .

13.7 Other interesting command examples o i e e e e e e e e e e

14 Docker for SCOT

14.1 Tableof Contents o i i e e e e e e e e e e e e e e
14.1.1 Overview e e e e e e e
14.1.2 SCOT containerS v v v v v i e
14.1.3 Docker Installation e e e e e e e e e e
14.1.4 SCOTInstallation 0 e e e e e e e e e e e e e
14.1.5 Managing the containers i e e e
14.1.6 Configuration v v i i e e e e e e e e e e e e e e e
14.1.7 FAQ/CommonlIssues e e e e

14.1.8 TODO

15 Indicies and Tables

Index

59
59
59
60
60
61
62
62
62
63
63

65
65
65
66

69
69
69
69
70
71
71
72

75
75
75
75
76
76
76
77
78
78

79

81

SCOT Documentation, Release 3.8.1

Thanks for using SCOT! Please consider joining the scot-users mailing list:

scot—users@sandia.gov

Send “subscribe” in the subject or message body.

You can also “follow” us on twitter at

Regardless, if you are using SCOT, please send us an e-mail at:

scot-dev@sandia.gov

and let us know. It helps us with our management continuing to support SCOT development.

Contents:

Contents 1

SCOT Documentation, Release 3.8.1

2 Contents

CHAPTER 1

License

Copyright [2016] Sandia Corporation.

Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an
“AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations under the License.

http://www.apache.org/licenses/LICENSE-2.0

SCOT Documentation, Release 3.8.1

4 Chapter 1. License

CHAPTER 2

Installing SCOT

SCOT Documentation, Release 3.8.1

6 Chapter 2. Installing SCOT

CHAPTER 3

Important Update

As of SCOT 3.6, you can now install SCOT via docker. Please see the scot-docker docs

3.1 Minimum System Requirements

e Ubuntu 14.04 LTS, 16.04 LTS, or CentOS 7.
¢ 2 Quad Core CPU

16 GB RAM

e 1 TB Disk

Note: Requirements are for production use. It is quite possible to run SCOT in a small VM for testing or demonstration
purposes. Your VM should have access to at least 4 GB of RAM in this case.

3.2 System Preparation

3.2.1 Ubuntu 14.04

Only limited testing on 14.04 install has been performed. 16.04 is recommended.

3.2.2 Ubuntu 16.04 and CENT 7

Install the OS. Make sure that git is installed.
Now you are ready to pull the SCOT source from GitHub:

$ git clone https://github.com/sandialabs/scot.git scot

cd into the SCOT directory:

SCOT Documentation, Release 3.8.1

$ cd /home/user/scot

Are you upgrading from SCOT 3.4? It is recommended to install on a clean system, however, if that is not possible
you should do the following

* Backup you existing SCOT database:

$ mongodump scotng-prod
$ tar czvf scotng-backup.tgz ./dump

delete SCOT init script and crontab entries:

rm /etc/init.d/scot3
crontab -e

go ahead and become root:

$ sudo -E bash

Make sure that the http_proxy and https_proxy variables are set if needed:

echo Shttp _proxy
export http_proxy=http://yourproxy.domain.com:80
export https_proxy=https://yourproxy.domain.com:88

You are now ready to begin the install:

./install.sh 2>&1 | tee ../scot.install.log

Go get a cup of cofee. Initial install will download and install all the dependencies for SCOT. At the end of the install,
you will be asked for a password for the admin account. Then the install script will output the status of the following
processes:

e mongod

* activemq

* scot

* elasticsearch
* scfd

* scepd

If any of the above are not running, you will need to debug why. Often, the following will help: (using scfd as an
example)

systemctl start scfd.service # systemctl status -1 scfd.service
The messages in the stats call will be useful in determining what is causing the problem.

Once the problem has been fixed. It is safe to re-run the installer script to make sure all the initialization scripts have
run correctly.

3.3 install.sh Options

SCOT’s installer, install.sh, is designed to automate many of the tasks need to install and upgrade SCOT. The installer
takes the following flags to modify its instalation behavior:

8 Chapter 3. Important Update

SCOT Documentation, Release 3.8.1

Usage: $0 [-A mode] [-M path] [-dersu]

—-A mode where mode = (default) "Local", "Ldap", or "Remoteuser"
-M path where to locate installer for scot private modules

-C replace existing config files

-D delete target install directory before beginning install
-d restart scot daemons (scepd and scfd)

-e reset the Elasticsearch DB

-r delete existing SCOT Database (DATA LOSS POTENTIAL)

-s Install SCOT only, skip prerequisites (upgrade SCOT)

-u same as -s

The default install with no options will attempt to install all prerequisites or upgrade them if they are already installed.
Once sucessfully installed, this should be rarely needed.

3.4 Using install.sh to upgrade

Sometimes you just want to refresh the SCOT software to get the latest fix or new feature. This is when you should
use the -s or -u flag. If the fix or feature is in the flairing engine (scfd) or the elasticsearch push module (scepd) you
will want to give the -d flag to restart those daemons.

3.5 Configuration Files

Configuration templates are in SCOT/install/src/scot. The files end in “cfg.pl”. You may edit them prior to install to
suite your environment, or you may edit them post install in /opt/scot/etc. All changes to config files after installation
will require a restart of the service for changes to take place.

Ideally, you should keep your config file modifications under software control outside of the SCOT repo directory.
Here’s how to set that up.

cd /home/scotadmin # Is -1 drwxrwxr-x scotadmin scotadmin 4096 Jan 1 19:19 SCOT
mkdir Scot-Internal-Modules # cd Scot-Internal-Modules # mkdir etc # cd etc # cp
./../SCOT/install/src/scot/scot.cfg.pl . # vi scot.cfg.pl # make changes # cd .. # cp
./SCOT/install/src/localinstall.sh ./install.sh # chmod +x ./install.sh

Place all your local configs in the Scot-Internal-Modules/etc/ directory. Modify the install.sh to suit your site. While
you are it, place that directory under software control (git, etc.) and now you can make changes to your config
confidently. When ever you run SCOT/install.sh the final step is a check for Scot-Internal-Modules/install.sh. If it
exists, it will be executed.

3.4. Using install.sh to upgrade 9

SCOT Documentation, Release 3.8.1

10 Chapter 3. Important Update

CHAPTER 4

POST Install Procedures

4.1 Migration

If you backed up data from your 3.4 SCOT instance and wish to restore it, you will need to follow the migration
procedure Migration

4.2 SSL Certs

SCOT will generate a “snake-oil” self signed certificate upon install. It is highly recommended to replace these
certificates with real certs as soon as possible.

4.3 Configuration Files

The following sections details the parameters in the varios configuration files available in SCOT. Use your favorite
editor to adjust the values to your site. You can test your changes for syntax errors by using the following command:

’$ perl -wc scot.cfg.pl

Correct any syntax errors reported before continuing. Typically you will need to resart SCOT for any changes to be
recognized.

4.3.1 scot.cfg.pl

This config controls many aspects of the SCOT application server.

$environment = (

time_zone => 'America/Denver’',

(continues on next page)

11

40

41

42

43

44

45

46

47

48

49

50

51

53

54

56

57

59

60

SCOT Documentation, Release 3.8.1

(continued from previous page)

scot version
version => '3.5.1"'",

set this to hostname of the scot server
servername => '127.0.0.1'",

the mode can be prod or dev
mode => 'prod',

authentication can be "Remoteuser", "Local", or "Ldap"
auth_type => 'Local',

group mode can be "local" or "ldap"
group_mode => 'local',

default owner of new stuff
default_owner => 'scot-admin',

default set of groups to apply to stuff
default_groups => {
read => ['wg-scot-ir', 'wg-scot-researchers'],
modify => ['wg-scot-ir'],

}I

the group that can perform admin functions
admin_group => 'wg-scot-admin',

filestore is where scot stores uploaded and extracted files
file_store_root => '/opt/scotfiles',

epoch_cols => [gw(when updated created occurred) 1],
int_cols => [qw(views) 1],
site_identifier => 'Sandia',

default_share_policy => 1,

share_after_time => 10, # minutes
stomp_host => "localhost",
stomp_port => 61613,

topic => "/topic/scot",

location and site_identifier (future use)

location => 'demosite',
site_identifier => "demosite",
default_share_policy => "none",

mojo defaults are values for the mojolicious startup
mojo_defaults => {
change this after install and restart scot
secrets => [gw(scotlsfun scOtlsc001l)],

see mojolicious docs
default_expiration => 14400,

(continues on next page)

12

Chapter 4. POST Install Procedures

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

SCOT Documentation, Release 3.8.1

(continued from previous page)

hypnotoad workers, 20 - 50 light

hypnotoad_workers

hypnotoad => {
listen => ['http://localhost:3000?reuse=1"'],
workers => 20,

clients => 1,

50-100 heavy use,
=> 75,

proxy => 1,
pidfile => '/var/run/hypno.pid"',
heartbeat_timeout => 40,
}I
}I
log_config => {
logger_name => 'SCOT',
layout => '%d %7p [%P] %$15F{1}: %4L %m%n’',
appender_name => 'scot_log',
logfile => '/var/log/scot/scot.log',
log_level => 'DEBUG',

}I

cgi_ids_config => {
whitelist_file
disable filters =>

=> 11
(1,
by

this file helps scot determine valid domain "entities"
keep up to date,
Q@daily (cd /opt/scot/etc; export https_proxy=yourproxy.com;
—publicsuffix.org/list/public_suffix_list.dat)
mozilla_public_suffix_file =>
modules to instantiate at Env.pm startup. will be done in
order of the array
modules => [

{

by creating a root cron job that does the following:

wget —q -N https://

'/opt/scot/etc/public_suffix_list.dat',

attr => 'mongo',
class => 'Scot::Util::MongoFactory',
config => {
db_name => 'scot-prod',
host => 'mongodb://localhost',
write_safety => 1,
find_master =1,

attr => "es",
class => "Scot::Util::ElasticSearch",
config => {
nodes => [gw(localhost:9200)1,
}I
}V
{
attr => 'esproxy',
class => 'Scot::Util::ESProxy’,
config => {
nodes => [gw(localhost:9200) 1],

(continues on next page)

4.3. Configuration Files

13

130

131

132

133

134

135

136

137

138

139

140

141

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

SCOT Documentation, Release 3.8.1

(continued from previous page)

}I

uncomment

#1{

+=

~ = o o o e S F FH S S S S

by

attr
clas
conf

by

attr
clas
conf

}y

att
cla
con

by

attr
clas
conf

max_workers => 1,
proto => 'http',
servername => 'localhost',
serverport => 9200,
username = ' ',
password = ',

=> 'mongoquerymaker',

s => 'Scot::Util::MongoQueryMaker'
ig => {
=> 'mq’',
s => 'Scot::Util::Messageq',
ig => {
destination => "scot",
stomp_host => "localhost",
stomp_port => 61613,

and configure if

r => 'imap',
ss => 'Scot::Util::Imap’,
fig => {
mailbox => '"INBOX', #
hostname => 'mail.domain.tld', #
port => 993, #
username => 'scot-alerts', #
#
password => 'changemenow', #
ssl => [
'SSL_verify_mode', 0 #
1, #
uid => 1, #
ignore_size_errors => 1, #

=> 'enrichments',
s => 'Scot::Util::Enrichments’',
ig => {

mappings map the enrichments that
for a entity type

mappings => {

ipaddr => [gw(splunk
ipvé => [gw(splunk
email => [gw(splunk) 1,
md5 => [gw(splunk) 1,
shal => [gw(splunk)],
sha256 => [gw(splunk) 1],
domain => [gw(splunk
file => [gw(splunk)
ganalytics => [gw(splunk)

geoip robtex_ip)
geolip robtex_ip)

robtex_dns)
1,
1,

’

you wish to use LDAP

mailbox, typically INBOX
hostname of the imap server
port of the imap server
username of the

account receiving alert email
password

ssl options
see perldoc IO::SSL

uid IMAP config item
ignore_size_errors

are available

1,
1,

1,

(continues on next page)

14

Chapter 4. POST Install Procedures

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

SCOT Documentation, Release 3.8.1

(continued from previous page)

snumber => [gw(splunk)],
message_id => [gw(splunk)],
cve => [gw(cve_lookup) 1,

}y

foreach enrichment listed above place any
config info for it here
enrichers => {
geoip => {
type => 'native',
module => 'Scot::Util::Geoip',
}I

robtex_ip => {
type => 'external link',
url => 'https://www.robtex.com/ip/%s.html"',
field => 'value',
title => 'Lookup on Robtex (external)',
}I
robtex_dns => {
type => 'external_ link',
url => 'https://www.robtex.com/dns/%s.html',
field => 'value',
title => 'Lookup on Robtex (external)',
}I
splunk => {
type => 'internal_ link',
url => 'https://splunk.domain.tld/en-US/app/search/search?
—g=search%%20%s"',
field => 'value',
title => 'Search on Splunk',
}I
cve_lookup => {
type => 'external_ link',
url => "https://cve.mitre.org/cgi-bin/cvename.cgi?name=%s
(H"I
field => "value",
title => "Lookup CVE description",
s
}, # end enrichment module enrichers
}, # end ennrichmenst config stanza
}, # end enrichments stanza
#i##

uncomment and fill out this section if you want to use ldap authentication
#H##

{

attr => 'ldap',

class => 'Scot::Util::Ldap',

i config => {

servername => 'ldap.domain.tld',

dn => 'cn=cn_name,ou=local config,dc=tld’',
password => 'changemenow',

scheme => 'ldap',

group_search => {

base => 'ou=groups,ou=orgnamel, dc=dcnamel, dc=dcname?2,
—dc=dcname3"',

filter => '(| (cn=wg-scotx))"',

attrs => ['en'],

(continues on next page)

4.3. Configuration Files 15

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

SCOT Documentation, Release 3.8.1

(continued from previous page)

bo
user_groups => {
base => 'ou=accounts, ou=ouname, dc=dcnamel, dc=dcnamel,
—dc=dcnamel’,
filter => 'uid=%s',
attrs => ['memberOf'],
}
}, # end ldap config
}, # end ldap
] 4
entity_regexes => [],
#

form contain directions on how to build the custom incident form fields
and signatures (and others later?)

#
forms => {
signature => |
{
type =>
key =>
value =>

value_type

type
url
key
b
label =>
help =>
by
{
type =>
key =>
value =>
label =>
help =>
value_type
type
url
key
}I
by
{
type =>
key =>
value =>

value_type

type
url
key

}I

label =>

help =>

—used in production",
}I
{
type =>
key =>

"textarea",
"description",

T
4

=> {
=> 'static',
=> undef,
=> 'description',

"Description",
"Enter a short description of the signature's purpose",

"input",
"type",
T
"Type",
"Enter the signature type, e.g. yara, snort, etc.",
= {
=> 'static',
=> undef,
=> 'type',

"dropdown",

"prod_sigbody_id",

(1,

=> {

=> "dynamic",

=> '/scot/api/v2/signature/%$s',
=> 'prod_sigbody_id"',

"Production Signature Body Version",
"Select the version of the signature body you wish to be,

"dropdown",
"qual_sigbody_id",

(continues on next page)

16

Chapter 4. POST Install Procedures

283

284

286

287

289

290

291

292

294

295

297

298

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

SCOT Documentation, Release 3.8.1

(continued from previous page)

value =>
value_type
type
url
key
}I
label =>
help =>
—used in quality",
}I
{
type =>
key =>
value =>
value_type
type
url
key
}I
label =>
help =>
}I
{
type =>
key =>
value =>
value_type
type
url
key
}I
label =>
help =>
}I
{
type =>
key =>
value =>
value_type
type
url
key
}I
help =>
label =>
}I
{
type =>
key =>
value =>

{ value => 'alert',

=> {

=> "dynamic",

=> '/scot/api/v2/signature/%s"',
=> 'qual_sigbody_id"',

"Quality Signature Body Version",

"Select the version of the signature body you wish to be,

"input_multi",
'signature_group',

(1,

=> {

=> "static",

=> undef,

=> 'signature_group',

"Signature Group",

"Group signatures under common names",

'input',
'target.type',

[}
’

=
=> "static",

=> undef,

=> 'target.type',

"Reference Type",

"The SCOT datatype that originated this

'input',
'target.id’,

[}
’

= {
=> "static",

=> undef,

=> 'target.id',

signature",

'The id of the SCOT datatype that originated this sig',

"Reference ID",

"multi_select",
"action",

[

selected => 0 },

{ value => 'block', selected => 0 },

]I

value_type
type
url
key

= {
=> "static",
=> undef,

=> 'action',

(continues on next page)

4.3. Configuration Files

17

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

SCOT Documentation, Release 3.8.1

(continued from previous page)

}I
label => "Action",
help => "The automated action that should take place when this
—signature 1is triggered. Select multiple actions using ctrl/command key.",
}I
]I
incident => [
substitue your text and values here to match your
incident types
{

type => "dropdown",
key => 'type',
value => [

value => 'NONE', selected => 1 },
value => 'FYI', selected => 0 },

{
{
{ value => 'Type 1 Root Comprimise', selected => 0 },
{ value => 'Type 1 User Compromise', selected => 0 },
{ value => 'Type 1 Loss/Theft/Missing Desktop', selected => 0 },
{ value => 'Type 1 Loss/Theft/Missing Laptop', selected => 0 },
{ value => 'Type 1 Loss/Theft/Missing Media', selected => 0 },
{ value => 'Type 1 Loss/Theft/Missing Other', selected => 0 },
{ value => 'Type 1 Malicious Code Trojan', selected => 0 },
{ value => 'Type 1 Malicious Code Virus', selected => 0 },
{ value => 'Type 1 Malicious Code Worm', selected => 0 },
{ value => 'Type 1 Malicious Code Other', selected => 0 1},
{ value => 'Type 1 Web Site Defacement', selected => 0 },
{ value => 'Type 1 Denial of Service', selected => 0 },
{ value => 'Type 1 Critical Infrastructure Protection',
—selected => 0 1},
{ value => 'Type 1 Unauthorized Use', selected => 0 },
{ value => 'Type 1 Information Compromise', selected => 0 },
{ value => 'Type 2 Attempted Intrusion', selected => 0 },
{ value => 'Type 2 Reconnaissance Activity', selected => 0 },
]I
value_type => {
type => "static",
url => undef,
key => 'type',
}I
label => 'Incident Type',
help => "Select best match for incident type",

b
substitute your text and values to match your incident cats

{

type => "dropdown",
key => "category",
value => [

{ value => 'NONE', selected => 1},
{ value => 'IMI-1', selected => 0},
{ value => 'IMI-2', selected => 0},
{ value => 'IMI-3', selected => 0},
{ value => 'IMI-4', selected => 0},
]I
value_type => {

type => "static",
url => undef,
key => 'category',

(continues on next page)

18 Chapter 4. POST Install Procedures

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

SCOT Documentation, Release 3.8.1

(continued from previous page)

by
label
help

=>
=>

=>
=>
=>

type
key
value
{value
{value
{value
{value
{value
{value
]I
value_type
type
url
key
bo
label
help

=>
=>

=>
=>

type

key

value
{value
{value
{value
{value

=>

]I
value_type

type
url
key

}I

label =>

help =>

}y

'Incident Category',

"Select best match for incident category",

"dropdown",
"sensitivity",

=> 'NONE', selected => 1},
=> '0UO0', selected => 0},
=> 'PII', selected => 0},
=> 'SUI', selected => 0},
=> 'UCNI', selected => 0},
=> 'Other', selected => 0},

=> {

=> "static",

=> undef,

=> 'sensitivity',

'Incident Sensitivity',

"Select best match for incident sensitivity",

"dropdown",
"security_category",

=> 'NONE', selected => 1},
=> 'Low', selected => 0},
=> 'Moderate', selected => 0},
=> 'High', selected => 0},
=
=> "static",
=> undef,
=> 'security_category',

'Incident Security Category',

"Select best match for incident security category",

#date field for tracking when incident occurred

{

type =>
key =>
value =>
value_type
type
url
key
}I
label =>
help =>
}I
{
type =>
key =>
value =>

"calendar",
"occurred",
nn

14
=> {
=>
=>
=>

"static",
undef,
'occurred',

"Date/Time Occurred",
"Select Date/Time Incident Occurred",

"calendar",

"discovered",
nn
’

(continues on next page)

4.3. Configuration Files

19

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

SCOT Documentation, Release 3.8.1

(continued from previous page)

value_type

type
url
key
}I
label =>
help =>
}I
{
type =>
key =>
value =>

=> {
=> "static",
undef,

'discovered',

=>
=>

"Date/Time Discovered",
"Select Date/Time Incident was

"calendar",

"reported",
nn
’

discovered",

value_type => {
type => "static",
url => undef,
key => 'reported',
b
label => "Date/Time Reported",
help => "Select Date/Time Incident was reported",
} 4
{
type => "calendar",
key => "closed",
value => ",
value_type => {
type => "static",
url => undef,
key => 'closed',
b
label => "Date/Time Closed",
help => "Select Date/Time Incident was closed",
br
] 14
incident_v2 => [
{
type => 'dropdown',
key => 'type',
value => [
place your types here...
{ value => "none", selected => 1 1},
{ value => "intrusion", selected => 0 },
{ value => "malware", selected => 0 1},
] 4
value_type => {
type => "static",
url => undef,
key => 'type',
} ’
label => "Incident Type",
help => <<'EQOF',
<table>
<tr> <th>intrusion</th><td>An intrusion occurred</td> </tr>
<tr> <th>malware</th> <td>Malware detected</td> </tr>
</table>
EOF
} ’
{
(continues on next page)
20 Chapter 4. POST Install Procedures

508

509

510

511

512

513

514

515

516

517

518

519

521

522

524

525

527

528

530

531

532

533

534

535

536

537

538

539

540

541

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

SCOT Documentation, Release 3.8.1

(continued from previous page)

i
}l

dailybrief
mail

by

url

by

incident_summary_template

<table>

type =>

key =>

value =>

value_type
type
url
key

}I

label =>

help =>

type =>
key =>
value =>
{value
{value
{value
{value
1,
value_type

type
url
key

}I

label =>

help =>

=

type =>

key =>

value =>

value_type
type
url
key

}I

label =>

help =>

=> {

=> {

"calendar",
"discovered",
nmn
’
= {
=> "static",
=> undef,
=> 'discovered',

"Date/Time Discovered",
"Select Date/Time Incident was discovered",

"dropdown",
"severity",
[
=> 'NONE', selected => 1},
=> 'Low', selected => 0},
=> 'Moderate', selected => 0},

=> 'High', selected => 0},
=> {
=> "static",
=> undef,

=> 'severity',

'Incident severity',
"Select best match for incident severity",

"input_multi",
"applies_to",

T

=> {

=> "static",

=> undef,

=> 'applies_to"',

'Guide applies to',
'Enter string matching subject that this guide applies to',

=> 'scot@yourdomain.com',
=> 'tbruner@scotdemo.com',
=> 'smtp.yourdomain.com',

=> 'https://scot.yourdomain.com/"

=> <<EOF,

<tr><th>Description</th><td><i>place description of the incident here</i></td></

—tr>

<tr><th>Related Indicators</th><td><i>Place IOC's here</i></td></tr>

(continues on next page)

4.3. Configuration Files

21

564

565

566

567

568

569

570

571

20

21

22

23

24

25

26

27

28

29

SCOT Documentation, Release 3.8.1

(continued from previous page)

<tr><th>Source Details</th><td><i>Place wource port, ip, protocol, etc. here</i></
—td></tr>

<tr><th>Compromised System Details</th><td><i>Place details about compromised,,
—System here</i></td></tr>

<tr><th>Recovery/Mitigation Actions</th><td><i>Place recovery/mitigation details_,
~here</i></td></tr>

<tr><th>Physical Location of System</th><td><i>Place the city and State of system,
—location</i></td></tr>

<tr><th>Detection Details</th><td><i>Place Source, methods, or tools used to,
—identify incident</i></td></tr>
</table>
EOF
)i

4.3.2 alert.cfg.pl

This config file controls how alerts are received from an IMAP server.

#H4#

alert.cfg.pl

#HHH

Used to configure the SCOT email alert input program
bin/alert.pl which uses Scot::App::Mail

#HHH

$environment = (

See perl DateTime documenation for values matching your locale
time_zone => 'America/Denver’',

Set up Scot Logging to your liking. See Log::Logdperl documentaton
for details on layout and log_level. By default, log_level of DEBUB
is very verbose, but is probably the level you want to be able to

figure out an error after it occurs.

log_config => {

logger_name => 'SCOT',
layout => '%d %7p [%P] %15F{1}: %4L %m%n',
appender_name => 'scot_log',
logfile => '/var/log/scot/scot.mail.log"',
log_level => 'DEBUG',

}I

MODULES

Each hash in the following array, will result in an attribute

being created in the Scot/Env.pm module that points to the class

described. if you ever get a "cant find foo in Scot::Env" you might
be missing something here

modules => [
describe to SCOT how to talk to your imap server
{

attr => 'imap',
class => 'Scot::Util::Imap',
config => {
mailbox => 'INBOX', # mailbox, typically INBOX

(continues on next page)

22 Chapter 4. POST Install Procedures

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

59

60

61

62

64

65

66

67

68

69

70

71

3

74

75

76

77

78

79

90

91

92

93

9%

SCOT Documentation, Release 3.8.1

(continued from previous page)

1/

by

describe

{

}I

s

attr
clas
conf

}y

hostname => 'mail.domain.tld',# hostname of the imap server
port => 993, # port of the imap server
username => 'scot-alerts', # username of the
account receiving alert email

password => 'changemenow', # password
ssl => [

'SSL_verify_mode', O # ssl options
1, # see perldoc I0::SSL
uid =1, # uid IMAP config item
ignore_size_errors => 1, # ignore_size_errors

how for the Scot Perl client to find the SCOT server

=> 'sgcot',
s => 'Scot::Util::ScotClient’',
ig => {
servername => 'scotserver',

username with sufficient scot perms to create alert (groups)

username

=>

'scot-alerts’',

the password for that user

password

=>

'changemenow’',

authentication type: RemoteUser, LDAP, Local

authtype

=>

'Local’,

mongodb connection information

{

by

attr
clas
conf

}y

=> 'mongo',
s => 'Scot::Util::MongoFactory',
ig => {
db_name => 'scot-prod',
host => 'mongodb://localhost',

write_safety
find_master

= 1,

ActiveMQ connection info

{

}I

attr
clas
conf

}y

=> 'mq’',

s => 'Scot::Util::Messageq',

ig => {

destination =>

stomp_host
stomp_port

=>
=>

"scot" ,
"localhost",
61613,

Elasticsearch connection info

{

attr
clas
conf

s

=> 'es',
s => 'Scot::Util::ElasticSearch’',
ig => {
nodes => [gw(localhost:9200) 1,
max_workers => 1,

(continues on next page)

4.3. Configuration Files

23

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

133

134

SCOT Documentation, Release 3.8.1

(continued from previous page)

parser_dir is where to find the modules that can parse the emails
parser_dir => '/opt/scot/lib/Scot/Parser’',
alert.pl can utilize rest or direct mongo connection to input data

get_method => "mongo", # other value is "rest"

leave_unseen = 1 means SCOT will leave emails marked "unread"
leave_unseen = 0 means SCOT marks emails read after processing
leave_unseen =1,

interactive => [yes | no]

pauses processing after each message and writes to console
interactive => 'no',

verbose => 1,

max_processes => 0 to positive int

number of child processes to fork to parse messages in parallel
0 = disable forking and do all messages sequentially

recommendation is 5-10 in production, 0 for testing.
max_processes => 0,

fetch_mode => [unseen | time]

unseen looks for unseen messages via imap protocol

time gets all message since a given time

both modes check unique message_id and will not reprocess something
already in SCOT database

fetch_mode => 'unseen',

since => { unit => amount }

hashref where key is the unit [day, hour, minute]

amount 1is integer value

used by time fetch_mode

since => { hour => 2 },

approved_alert_domains => ['domainl\.org', ...]

only domains listed in this array can send email to scot

periods need to be escaped by \

4o e e e

approved_alert_domains => ['domain\.tld' 1],

approve_accounts => ['user@email.addr' 1];

account in this domain can also send to scot
approved_accounts => ['user(@server.domain.tld'],

future use:

location => "scot_demo",
site_identifier => "scot_demo",
default_share_policy => "none",

4.3.3 flair.cfg.pl

The Flair app automatically detects enties, see Entities. This config file look like:

$environment = (
max_workers => 4,
location => 'snl',
fetch_mode => 'mongo',

mozilla_public_suffix_file => '/opt/scot/etc/public_suffix_list.dat"',
log_config => {
logger_name => 'flair',

layout => '%d $7p [%P] %15F{1}: %4L %Sm%n',
appender_name => 'regex_log',
logfile => '/var/log/scot/flair.log"',

(continues on next page)

24

Chapter 4. POST Install Procedures

43

44

45

46

47

48

49

60

61

62

63

64

65

SCOT Documentation, Release 3.8.1

(continued from previous page)

log_level
}I
default_groups

read =>

modify =>
}I
default_owner
img_dir =>
html_root =>
modules => [

{

=> 'DEBUG',
:>{

['wg-scot-ir'],
['wg-scot-ir'],
=> 'scot-admin',
'/opt/scot/public/cached_images',
'/cahced_images',

attr => 'mongo',
class => 'Scot::Util::MongoFactory',
config => {
db_name => 'scot-prod',
host => 'mongodb://localhost',
write_safety =1,
find_master = 1,

}y

attr => 'mq',

class =>

config => {
destination =>
stomp_host =>
stomp_port =>

}I
br
]I
local_regexes => |

{

'Scot::Util::Messageq',

'scot',
'localhost’,
61613,

"\b([s8][0-9]1{6,7})\b",

type => 'snumber',
regex =>
order => 501,

options =>

type => 'sandia_
regex => '\bas[0-
order => 500,

options =>

lwp => {
use_proxy =>
timeout =>
ssl_verify_mode =>
verify_hostaname =>
ssl_ca_path =>
proxy_protocols =>
proxy_uri =>
lwp_ua_string =>
—AppleWebKit /537.36 (KHIML,

by
)i

{ multiword =>

{ multiword =>

"no" },

server',
9]+snl (1x|nt)\b"',

"no" },

'/etc/ssl/certs’',

['http', 'https'],
'http://proxy.sandia.gov:80"',
"Mozilla/5.0 (Macintosh; Intel
like Gecko) Chrome/41.0.2227.1

Mac O0S X 10_10_1),,
Safari/537.36",

4.3. Configuration Files

25

SCOT Documentation, Release 3.8.1

4.3.4 game.cfg.pl

This controls aspects of the gamification system.

$environment = (
log_config
logger_name
layout
appender_name
logfile
log_level

=> {

}I
days_ago
modules

{

=> 30,
=> [

attr =>
class =>
config =>

db_name

host

write_safety
find _master

1,

=> 'SCOT',

=> '%d %7p [%P] %15F{1l}: %4L %m%n',
=> 'scot_log',

=> '/var/log/scot/scot.game.log"',
=> 'DEBUG',

'mongo’,

'Scot::Util::MongoFactory',

{

=> 'scot-prod',

=> 'mongodb://localhost',
= 1,

= 1,

4.3.5 stretch.cfg.pl

This controls aspects of the elastic search input system.

$environment = (
time_zone
max_workers => 1,

=>

log_config => {
logger_name
layout
appender_name
logfile
log_level
}I
max_workers =>
stomp_host =>
stomp_port =>
topic =>
default_owner =>
modules => [
{
attr =>
class =>
config =>
nodes
}I
}I
{
attr =>

'America/Denver’',

=> 'SCOoT',

=> '%d %7p [%P]
=> 'scot_log',
'/var/log/scot/scot.stretch.log',

'DEBUG',

%$15F{1}: %4L Sm%n',
=>
=>

2/
'localhost',
61613,
'/topic/scot',
'scot-admin',

'es',
'Scot::Util::ElasticSearch’',
{

=> [gw(localhost:9200) 1,

'scot',

(continues on next page)

26

Chapter 4.

POST Install Procedures

43

44

45

46

47

48

49

SCOT Documentation, Release 3.8.1

(continued from previous page)

class => 'Scot::Util::ScotClient’',
config => {
servername => "localhost",
username => "scot-alerts",
password => "changemenow",
auth_type => "basic",
}I
}!
{
attr => 'mongo',
class => 'Scot::Util::MongoFactory',
config => {
db_name => 'scot-prod',
host => 'mongodb://localhost',
write_safety = 1,
find master => 1,

s
by
1,

future use:

location => "scot_demo",
site_identifier => "scot_demo",
default_share_policy => "none",

4.4 CRON Jobs

The /opt/scot/alert.pl program that reads in alerts from the IMAP server needs a crontab entry. It is recommended to
run this every 2 to 5 minutes. Here’s the crontab entry:

/5 » % x % /opt/scot/bin/alert.pl

Automating SCOT backups are a good idea as well:

’O 3,12,20 = %= » /opt/scot/bin/backup.pl

backup scot at 3am 12 noon and 8pm

The game.pl job populates the analyst leaderboard:

’30 4 % % x /opt/scot/bin/game.pl

The metric.pl job calculates response time metrics:

’15 2 % % * /opt/scot/bin/metric.pl

4.4. CRON Jobs

27

SCOT Documentation, Release 3.8.1

28 Chapter 4. POST Install Procedures

CHAPTER B

Migration

Many parts of the database have changed from the 3.4 version of SCOT and it is necessary to migrate that data if you
wish to continue to access that data in SCOT 3.5. We have developed a migration program to assist with this task.

We are assuming that you Mongo instance has sufficient space to keep the 3.4 database and the new 3.5 database on it
during the migration. The 3.5 instance will be roughly the same size as the 3.4 instance.

Depending on the amount of data you need to migrate, this process could take a while. It is hard to estimate, but from
my experience, the migration will process a million alerts in 24 hours.

Migration is designed to be parallelized. Not only can each collection be migrated concurrently, but you can also
specify the number of processes to operate on each collection. For example, if you have 1 million alerts to process,
you can specify 4 processes to work on alerts and each process will migrate 250,000 alerts. Unless you have very large
databases, my recommendation is to allow a single process to work on each collection because this will make it easier
to detect and correct any anomalies in the data migration.

The migration command:

$ cd /opt/scot/bin
$./migrate.pl alert 2

would begin migrating alerts from the 3.4 database using two processes.

Best practice in migration is to open a terminal for each collection, start tmux or screen, and then start the migration
for a collection. Extensive logging is performed in /var/log/scot/migration.alert.log, where alert is the actual collection
being migrated. Pro tip: ‘grep -i error /var/log/scot/migration*’

The list of collections to migrate:
alertgroup # alert # event # entry # user # guide # handler # user # file

If you wish for totally hands off operation, do the following:

$ cd /opt/scot/bin
$./migrate.pl all

This will sequentially migrate the collections listed above. The migration will take a bit longer, though.

29

SCOT Documentation, Release 3.8.1

NOTE: Migration assumes that the database to be migrated is on the same database server as the new server. So in
other words, if you are installing SCOT 3.5 on a new system, and want to migrate your database to that server, you
will need to use the mongodump and mongorestore to move the old database to the new server first.

Example Migration:

$ ssh oldscot
oldscot:/home/scot>

oldscot:/home/scot>
oldscot:/home/scot>
oldscot:/home/scot>
$ ssh newscot

newscot:/home/scot>

newscot:/home/scot>

newscot:/home/scot>

mongodump scotng-prod

tar czvf ./scotng-prod.tgz ./dump

scp scotng-prod.tgz scot@newscot:/home/scot

exit

tar xzvf ./scotng-prod.tgz

mongorestore —--db scotng-prod ./dump/scotng-prod

cd /opt/scot/bin

newscot:/opt/scot/bin> ./migrate.pl all

30

Chapter 5. Migration

CHAPTER O

Save Your Old Database

The migration tool has been tested, but as with any process that operates on user data, things can happen. The only
defense is to save a copy of the last 3.4 SCOT database backup.

31

SCOT Documentation, Release 3.8.1

32 Chapter 6. Save Your Old Database

CHAPTER /

SCOT Feeding

or How to get alerts into SCOT.

SCOT is designed to receive data from detection systems in two ways.

7.1 Email Ingest

Many detection systems have the ability to generate email alerts. For these systems, you should configure those alerts
to go to an email inbox that SCOT will have permission to access, e.g. scot-alerts @yourdomain.com. The Scot alert.pl
program upon start will query that mailbox for messages. Configuration of the alert.pl program is handled in the
/opt/scot/etc/alert.cfg.pl file.

Email ingest has many advantages, such as a flexible and resilient method of message delivery. To use this method,
though, you must create a Parser for the type of Email message. SCOT comes with sample parsers for Fireeye,
Microsoft Forefront, Sourcefire, and Splunk emails. These parsers, located in /opt/scot/lib/Scot/Parser should provide
a template to create your own parsers for the email from your detection system.

The following section will show how the Scot::Parser::Splunk (/opt/scot/lib/Scot/Parser/Splunk.pm) module parses an
HTML formated email.

7.1.1 HTML Email

When creating a Parser module, you must first implement a “will_parse” function, that will return true if your parser
can parse the e-mail message. Looking at Splunk.pm’s will_parse function, we see the following:

if ($subject =~ /splunk alert/i) {
return 1;

}

This means that if the subject of the email contains the case insensitve phrase “splunk alert”, tell the alert ingester that
this is the parsing module to use to parse this email.

Another way to test would be to check the address of the email sender like this:

33

mailto:scot-alerts@yourdomain.com

SCOT Documentation, Release 3.8.1

my $from = S$Shref->{from};
if ($from =~ /splunk\@yourdomain.com/i) {
return 1;

Remember, the will_parse should return “false” (undef in Perl) if this parser can not parse the email.

The next function that must be implemented is the “parse_message” function. It is passed a hash reference that contains
the email’s subject, message_id, plain text of email, and html version of email (if it exists). At this point you have to
refer to sample parsers provided on ideas how to parse your message. If you get stuck, please feel free to ask for help
on our github page.

The result of the parsing should be a hash that looks like the following:

%json = (
data => [
{ columnl => datavalll, column2 => datavall2, ... },
{ columnl => dataval2l, column2 => dataval22, ... },
]I
columns => [columnl, column2 ...],

)i

Note: the hash may contain other keys besides data and columns depending on that data you want to extract from the
email.

7.2 REST interface

OK, you’ve looked at the parsers, and for whatever reason you decide that creating your own is not the way you wish
to go. In that case, the REST API is the way for you to go. Essentially, you will need a username and password, or an
apikey from SCOT. Then you will have to configure your detector to POST to SCOT via the API. Alternatively, you
could write your own wrapper to do the REST calls.

Here’s a sample curl command to insert an alertgroup:

curl -H "Authorization: apikey S$SCOT_KEY" -H "Content-Type: application/json" -X POST,_
—-d "{
"source": ["email_examinr" 7,
"subject": "External HREF in Email",
"tag": ["email href"],
"groups": {
"read": ["wg-scot-ir" 1],
"modify": ["wg-scot-ir"],
}I
"columns": ["MAIL_FROM", "MAIL_TO", "HREFS", "SUBJECT"],
"data": [
{
"MAIL_FROM": "amlegit@partner.net",
"MAIL_TO": "br549@watermellon.com",
"HREFS": "http://spmiller.org/news/please_read.html",
"SUBJECT": "Groundbreaking research!"

"MAIL_FROM": "scbrb@aa.edu",
"MAIL_TO": "tbruner@watermellon.com",
"HREFS": "https://www.aa.edu/athletics/schedule",

(continues on next page)

34 Chapter 7. SCOT Feeding

SCOT Documentation, Release 3.8.1

(continued from previous page)

I
}' https://scot.

"SUBJECT": "Schedule for next week"
"MAIL_FROM": "bubba@bbn.com"

"MAIL_TO": "fmilszx@watermellon.com",
"HREFS": "https://youtu.be/JAUoegvedMo",
"SUBJECT": "Can not wait!"

yourdomain.com/scot/api/v2/alertgroup

7.2. REST interface

35

SCOT Documentation, Release 3.8.1

36 Chapter 7. SCOT Feeding

CHAPTER 8

Overview

Cyber security incident response can be a dynamic and unpredictable process. What starts out as a simple alert
may lead a team down a rabbit hole full of surprises. The Sandia Cyber Omni Tracker, SCOT, is a cyber security
incident response (IR) management system designed by cyber security incident responders to provide a new approach
for managing security alerts, including coordinating team efforts, capturing team knowledge, and analyzing data for
deeper patterns. SCOT integrates with existing security applications to provide a consistent, easy to use interface that
enhances analyst effectiveness.

8.1 Philosophy

When Sandia’s IR team was looking for a system to capture its work product, they already had a great deal of experi-
ence with existing products. RT and its IR extensions, TRAC and Remedy were products that had been tested, along
with several large SEIMS. For various reasons, none of these tools were adopted by the team. For some, the com-
plexity of the tool prevented an already overloaded team from utilizing it. For others, there was a mismatch between
what would be required of the team in order to use it and the reality of how the current IR process worked. From these
frustrations and to fill the IR team’s need, SCOT was developed with these principles in mind:

¢ SCOT should require minimal training to use and understand
* SCOT should aim to always improve the effectiveness and efficiency of the IR analyst

e SCOT should reward the IRT for it use.

8.2 Why Use SCOT

* Designed to be easy to use, learn, and maintain.
* Real-time updating keeps team in sync and their efforts coordinated.

* Automated detection and correlation of common cyber security indicators such as IP addresses, domain names,
file hashes and e-mail addresses.

» Alert centralization from a wide range of security systems.

37

SCOT Documentation, Release 3.8.1

* Extensible plugin infrastructure to allow additional automated processing.

* Full Text searchable knowledge base that allows the entire team to easily discover and learn from past cyber
security events.

* Open Source. Hack it up to meet your needs. (Please share!)
Our current users state:
e SCOT just works and never slows me down.

e I’m putting more and more of my investigation notes into SCOT. It has paid of tremendously for me and helped
me discover several non-obvious patterns.

* Aside from my e-mail client, it’s the one application that is always on my screen.

* Give up SCOT? I'd leave incident response first!

8.3 Terminology

Having a common vocabulary is very important to improve understanding. So many terms are overloaded with mean-
ings or have different connations to different teams. The following sections define terms that SCOT use and the
interpretation of those terms in SCOT’s context.

8.3.1 IRT

Incident Response Team, a group of analysts that look for and respond to security conditions.

8.3.2 Alertgroups
Many security applications have the ability to send data to other systems when certain conditions are met. These
methods often vary widely. There is one commonality among most applications, however, and that is EAmail.

One of the ways SCOT can accept information from other systems is by setting up an IMAP inbox that these systems
can send E”mail to. SCOT then periodically checks that inbox, and ingests any new email messages it finds. Creation
of Alertgroups are possible via the REST API as well.

The E”mail messages may often contain several “rows” of data. For example, several IDS alerts could be bundled up
into a single E”mail message. This grouping of alerts is called an “Alertgroup.” In other words, an Alertgroup consists
of one or more “Alerts” that was entered into SCOT at the same time.

8.3.3 Alerts

An individual “row” from an “Alertgroup.” An alert can consist of any number of key”value pairs. An example alert
could be the output of an IDS system that shows a specific rule had triggered and the relevant details of that triggering.

The “Alert” is the starting point for the SCOT processing workflow. Analysts triage the incoming alerts and close or
promote those alerts into “Events.”

8.3.4 Events

Typically, an experienced analysts should be able to deteremine if there is something interesting about an alert in a few
minutes time. If there further investigation is merited, the alert should be promoted to an “Event.”

38 Chapter 8. Overview

SCOT Documentation, Release 3.8.1

The Event is where the majority of the IRT’s work will be recorded. Promotion to an “Event” is a signal for the IRT
that there might me something that needs the team’s attention.

Each analysts is capable of adding information into “Entries” and those notes are instantly available to the rest of the
team (assuming proper authorization).

The event lifecycle includes research and collection of data about the event from the resources available to the team.
A summary may be created to allow others coming late to the party to get up to speed. Mitigation activities can be
documented as well. Some Events are so serious in nature or group of Events can be aggregated into an “Incident.”
Finally, Events can be closed as a signal that no further activity on that Event is expected. If that expectation proves
false, the team can still add entries or even re”open the event.

8.3.5 Entry

An entry is a chunk of text or graphic data that is stored in SCOT. Entries are associated with Alertgroups/Alerts,
Events, Incidents, Intel, and Entities. The data entered into a Entry is scanned for “Entities” and “Flair” is applied to
entry to aid the analysts.

Entries are “owned” by the creator of the entry, but may be edited by anyone in the modify group. Any entry can
be “promoted” to Summary status and will appear at the top of the detail page. Entries may also be designated as a
“Task.”

8.3.6 Task

An Entry that has been marked as a task. Tasks track “todo” items and serve as reminders to do things as well as
requests for help from your team. Tasks can not be assigned to others, as a user must “take” ownership of a task.
This prevents people from claiming not to see tasks in their “queue” and promotes a proactive approach to team
coordination.

8.3.7 Entity

Entities are a growing list of string fragments that SCOT can detect within entry data. Examples include IP addresses,
E”mail addresses, Domain names, MDS5 hashes, SHA1 hashes, SHA256 hashes, E*mail message id strings, and
filenames with common extensions. Entities can be thought of as IOC’s.

Once detected in Entry data, Entities are cross referenced with the entirety of SCOT’s historical records. Various data
enrichment activities can also take place based on the type of Entity. Finally, the source Entry data is rewritten to
“Flair” or highlight these strings.

8.3.8 Flair

Flair is the highlighting and decoration of Entities. First Entities are wrapped in a span that highligts them in yellow.
Next various icons are attached to the span that represent the number of times this entity has appeared in SCOT, flags
for geoip data, if additional notes about the Entity are available, and others that you can implement.

8.3.9 Intel

Often, IRTs receive information about threats, reports from other entities, and other general information that can be
thought of as Intel. Storing these items within SCOT allows SCOT to detect entities, flair them, and cross reference
these entities in existing and future Alerts and Entries.

8.3. Terminology 39

SCOT Documentation, Release 3.8.1

8.3.10 Guide

Guides are mini instruction manuals that help your analysts know how to respond to incoming Alertgroups. Guides
are linked to the Alertgroup throught the Subject value of the Alertgroup.

8.3.11 Signature

Do you wish there was a place to store all your Yara, Snort, and other detection signatures? We look no further. Here
you can store, discuss, and revise your signatures and link them to your activities tracked in SCOT. You can use the
REST API to serve these signatures to your detection systems.

40 Chapter 8. Overview

CHAPTER 9

User Guide

SCOT is divided into several main sections. Alerts flow into SCOT and are processed in the Alert tab. Some subject of
those Alerts will be promoted into Events, where the team records the results of their investigations. A subset of those
Events will be important enough to be promoted into Incidents. Simultaneously, new Intel reports will be created and
addes to SCOT. The sections below describe how to use each section.

9.1 Views

9.1.1 List View

A grid that can be filtered that display many things (alertgroups, events, etc.)

9.1.2 Detail View

The section of the page that displays details about the thing selected in the the List view.

9.2 Alert

To access the Alert Grid, click on the “Alert” button in the Navigation Bar at the top. The grid will appear in which we
see a list of alerts that have come in and need to be triaged. Each row represents a group of alerts that came in together
and are possibly related. Let’s go over what each of the columns in the grid means.

Status The status can be either open (no action taken), closed (no action needed), or promoted (more
analysis needed). All alertgroups come into SCOT as “open”.

Sources The “sources” column identifies the systems/organizations/processes that are responsible for
creating the alert.

Subject The subject is a quick description of the alertgroup. If the alert came in through email, this is the
email subject.

41

SCOT Documentation, Release 3.8.1

Tags Tags are seen as a catchall and are useful in subsequent searches for alerts with a specific set of tags.

Views You can also filter by the number of times a particular alert has been viewed to know if anyone
else on your team has looked at it.

_static/alertfilters.png

Each column contains a textbox to filter the grid results. Just enter in a filter and press ‘Enter’ on your keyboard to
activate the filter. You can also click on a column above the filter textbox to sort by that column. We can see the default
sort order is by ‘created’ which is indicated by the chevron next to the column name.

A summary of alert status within an alertgroup can be quickly determined by glancing at the status column. The legend
below explains the shapes/colors used.

42 Chapter 9. User Guide

SCOT Documentation, Release 3.8.1

9.3 Alert Details

Let’s look at the contents of an alert by clicking on one of the rows in the Alert Grid. Note:

_static/alert_details.png

Inside the Details view, we see the header (black background, white text). The header allows us to edit basic metadata

about the alert such as the subject, close/open it, add/remove tags and sources.

To change the subject, click in the black subject box and edit like you would any other textbox; changes are saved in

real time. To change the status of an alert, click on the button titled “open”. To add a tag, click on the

_static/add

9.3. Alert Details

43

png

SCOT Documentation, Release 3.8.1

_static/remgve_x.png

button and start typing. To remove a tag, click the associated with it.

Now let’s look at the context sensitive command bar located directly below the header.

_static/AlertMenuContextUnselected.png

Toggle Flair Toggle the display of Flair.

Reparse Flair Mark the Alertgroup for re-parsing by the Flair engine
Guide Display the Guide for this Alertgroup type.

View Source View the raw unparsed versions of the Alertgroup

View Entities View the list of discovered Entities in this Alertgroup
Viewed by History See who viewed this alertgroup.

Alertgroup History See the history of actions taken on this Alertgroup

After clicking on one or more Alerts in the detail view, the alertgroup context menu changes to

_static/AlextMenuContextSelected.png

Open Selected Change status of selected alerts to “open”
Closed Selected Change status of selected alerts to “closed”
Promote Selected Change status of the selected alerts to “promoted”

Add Selected to Existing Event Add the selected alerts to an existing event. You will need to know the
event number.

Add Entry Add an Entry to the selected alerts
Upload File Upload a file and associate it with the selected alerts
Export to CSV Export the detail view into a CSV file and download it to the desktop.

Let’s look at the actual alerts in this alertgroup now. Each row in the table represents an alert, which may or may not
be related to the other alerts. You can select one or more rows by clicking on them and utilizing the Shift and Ctrl keys
as you would when selecting files in Windows Explorer. Selected row(s) are highlighted in green.

44 Chapter 9. User Guide

SCOT Documentation, Release 3.8.1

_static/alert_rows.png

For each alert, we want to answer the following:
* Is this a false positive?
* Do we have enough information to continue?
» Should we investigate further, or is this known to be malicious?

If this is a false positive, we can go ahead and close the alert by first selecting it, then choosing the “Close Selected”
button from the context sensitive menu above. The status for this alert will change to closed and this status change
will appear instantly on the screen of all other analysts.

If there is not enough information to continue, but there is some information about this alert that could be helpful to
another analyst, select the alert and click “Add Note”. In the new textarea that pops up, type your note (full HTML
support) and click “Save”.

If we need to investigate further, select the row(s) in question and click ‘Promote Selected’. This will create a new

9.3. Alert Details 45

SCOT Documentation, Release 3.8.1

Event where you can document your findings and collaborate with other analysts on your team. This event is linked
back to the original alert, so no data is lost.

9.4 Events

This is where the fun begins! Promotion to an Event, is a signal to the team that the promoting analyst thinks that there
is something in this alert that merits the attention of the team. During this phase, the team is investigating the alert,
dropping their results into Entries, creating a summary, asking each other for help via Tasks, and tagging the results.

9.4.1 Event Grid View

The Event grid allows you to view sets of Events and to filter those sets in various ways.

9.4.2 Event Detail View

Event Id Each Event has a unique integer id assigned to it.
Subject The team can give each event a subject. By default, it will be the same as the alertgroup.

LLINT3

Status The event can be “open”, “closed”, or “promoted.” Many events can remain “open.” Some people
get hung up on an event being open for months, but it really only means that the team thinks that
there may be more to come on this event in the future. “Closed” should be reserved for this is no
longer actively being worked. Promoted gets assigned if the Event becomes an Incident. The status
is easily changed using the pull down.

Owner Every Event has an owner.

Updated This the time of the last update of this event.

Promoted From Links back to the alerts that originated this Event.

Tags Add, Delete, or Edit the set of tags applied to this event.

Source The Source of this Event. Analysts can add to this.

Add Entry This is how the analyst creates an new entry box to enter information about the Event.
Upload file Upload a file and associate that file with this event.

Toggle Flair Turn Flair on or off

Viewed by History See who has been viewing the event

Event History See the changes that have happend to the event

Permissions View and change the groups that have read and write access to this event
View Entities See all discovered Entities

Promote to Incident promote the event up the food chain

Delete Event Delete this event.

The first boxes after the command buttons are known as Entries. There are several types of entry box. The first entries
to appear will be Summary entries, if they exists. Summary entries are highlighted in light yellow. In the example
above, a summary entry has not yet been created.

Alert recap Entries usually appear next. These entries contain a copy of the alert data so the analysts does not have to
switch back to alert view to see the details.

46 Chapter 9. User Guide

SCOT Documentation, Release 3.8.1

_static/EventListView.png

9.4. Events

47

SCOT Documentation, Release 3.8.1

_static/EventDetailView.png

48 Chapter 9. User Guide

SCOT Documentation, Release 3.8.1

Other entries follow and contain data input by the analyst and, in the future, from automated processes. Entries with a
red title bar are Tasks that have yet to be marked as completed. Green title bars denote completed tasks.

9.5 Incident

Incidents are groupings of Events. One way to use Incidents is to track the Events that rise in importance that they need
to be reported to another organization or to higher management. Incidents track metadata such as type of incident,
category, sensitivity, dates when the incident occurred, was discovered, was reported, and when closed. Also the
Incident can be linked to external reporting ids.

9.6 Intel

The Intel collection is for tracking cyber security intel reports from public or private sources. Once input, the Flair
engine will detect and cross correlate all Entities found with the Intel record. This can be very powerful and easy way
to find threat actors withing you existing SCOT data as well as flagging it in new incoming alerts.

In the example above, we see that an analyst received a heads up from a friend at the XYZ corp. The analyst created
the intel record, and SCOT flaired the screensaver name and the hash of that file. Now the analyst can immediately
see that the kittens.scr has been seen in the SCOT data one other time and can click on the kittens.scr to see where and
what was done about it.

9.7 Guide

Guides are instruction manuals, built by the team over time, on how to handle an Alert type. This can greatly speed
the training of new analysts and provide a forum for the team to share their techniques for investigating an alert type.

9.8 Task

Tasks are used mostly in Events to note a unit of work that still needs to be performed for example, ‘“Pull pcap for
8.8.8.8 from 8am - 2pm”. Some people use these as reminders for tasks they have to do later in an investigation, and
some use them to request help from other members on their team.

This feature has proven very helpful when working on large events by coordinating what work still needs to be done,
and those who are working on it. The user creates an entry and by clicking the dropdown selects “Make Task”. This
task now shows up on the task list, and anyone from the team can take ownership of the task. This way an analyst that
just came back from lunch, or just arrived at work can jump right in.

When a task is created, the creator owns it. The only way to transfer ownership of a task is for another team member
to “take ownership.” This prevents tasks being pushed onto someone who may be on vacation. If you want to help,
take the task. If someone whats it back, they can take ownership again.

9.9 Signature

Signatures are used to integrate the version control of signatures within 3rd party mitigation tools (firewalls, IDS, etc.)
while being managed by SCOT as a central repository. Signature’s have the same list view as other “things” within
SCOT, but they have a slightly modified detail view.

9.5. Incident 49

SCOT Documentation, Release 3.8.1

_static/intel_details.png

50 Chapter 9. User Guide

SCOT Documentation, Release 3.8.1

The detail view of signatures contain metadata editing, where you can modify a description, signature type (yara,
ids, firewall, etc.), production and quality signature body versions, signature group that the signature belongs in, and
signature options (written in JSON format). The final new item within the detail view is the Signature body editor.
This editor should be used to add in the signature’s that will be used in the 3rd party tool. The output of the body is
converted to a string format, which can then be ingested by the other tool.

Below these new sections, the entries that are found in other “things” still exist.

See the signature page for more information.

9.10 Tags

Tags are way to annotate AlertGroups, Events, Intel, Incidents, and Entities within SCOT. Say an particular Alert was
a false positive. Tagging that alert as “false_positive” will give the team to track all false positive alerts and their
occurrence over time. This can be very helpful in debugging or improving detectors.

Tags are space delimited. In other words tags can not contain a space. You can apply many tags to a taggable object.
With some creativity you can create grouping of tags by placing a seperator in the string like: “ids:false_positive” to
track false positives in the ids system.

9.11 Flair

9.11.1 What the heck is Flair?

The inspiration for the term comes from the classic film “Office Space” (see https://youtu.be/_ChQKS8j6s08). We
wanted to add pieces of “flair” to indicators of compromise (Entities) to give instant information to analysts. Currently,
flair items include a growing list including:

* number of times the Entity appears in SCOT
* country flag for Geo location of IP address

* the existence of notes about the Entity

9.11.2 The Process

Upon Alert or Entry input to SCOT, a message is emitted on the SCOT activity queue. The Flair process, which
eagerly listens to this queue, retrieves the Alert or Entry via the REST API and begins processing the HTML.

If we are processing an Entry, we first scan for tags. IMG tags may be links to external websites, internal
websites, or Base64 encoded data. Links to external sites may open you up to data leakage (think web bugs), internal
sites may require anoying re-authentication, and storing Base64 images within Entries can cause slow downs in storing
and indexing those images within SCOT. So let’s cache those images locally on the SCOT server.

Assuming that Flairing is running on the SCOT server, external and internal images are pulled down to the server.
Base64 images are saved as a file. The HTML of the Entry is modified to point to the new location of the cached file.
If flairing is running on a seperate system, it will upload the cache image file to SCOT via the REST API and issue an
update to the Entry’s HTML.

We don’t usually encounter IMG tags in Alerts, so we skip scanning for IMG tags. (If you do, place a feature request
for us to handle it!)

Next, the Flairing process parses the HTML in the Alert or Entry begins looking for flairable items. The following
items are detectable:

9.10. Tags 51

https://youtu.be/_ChQK8j6so8

SCOT Documentation, Release 3.8.1

* [P addresses

* E-mail addresses

* Domain Names

¢ File names with common extensions

* Hexidecimal Hash representations like MD5, SHA1, and SHA256
* Latitude/Longitude coordinates

These Entities are extracted via Regualar Expressions. If you develop other interesting extractions, please submit a
Pull request to have them included in Scot::Util::EntityExtractor.

Extracted Entities are stored within the SCOT database and Links are created to the Alert/Alertgroup or Entry and
parent Alertgroup, Intel, Event, or Incident. The source HTML is also modified to wrap the Entity with a tag
of class “entity.” Addition classes may be applied to the Entity based on the type of the Entity.

9.11.3 User Defined Entity

You can highlight text within an Entry and a new button will appear that will allow you to “create user defined entity.”
You will be asked to describe the type of the entity. Once you click on create, SCOT will then search through all alerts
and entries for that string and flair them. All future appearances of that string will also be flaired as an entity of the
type you created.

For example, let’s pretend you just created an entry that says:

The fuzzy foobar group's fingerprints are all over this.

You want to link “fuzzy foobar” as a threat actor group and be able to find other references to this group within
SCOT. Highlight the text “fuzzy foobar” click “create entity” and enter “threat-actor-group” as the type. (spaces are
autocoverted to dashes ‘-°). Now SCOT will add “fuzzy foobar” to the list of flairable entities and well as “reflairing”
instances in previous entries.

9.12 Entities

SCOT parses the alert data and entries for various entities. Entities are commonly refred to as IOC’s (indicators of
compromise) but are only limited by the ability to parse and extract strings within the alert and entry data.

Once identified, SCOT, stores metadata about these entities that allows the SCOT UI to “flair”” them with highlighting,
badges, and other useful visual indicators that help analysts to rapidly identify the impact of the entity.

9.12.1 Entity Types

SCOT can automatically detect and extract the following Entities:

Domain Names SCOT extracts domain names in form of host.sub.domain.tld, where tld is 2 to 6 characters in length.
Secondary validation against Mozilla’s TLD database (effective_tld_names.dat)

File Names Common filename extensions such as exe, pdf, and so on are detected by SCOT.
Hashes SCOT can extract MD5, SHA1, and SHA256 hashes from input data.

IP Addresses SCOT will extract IP addresses. IP version 4 address will have type ipaddr, and IP version 6 addresses
will have type “ipv6”.

Email Addresses E-mail addresses, both email username and the domain, are extracted and watched.

52 Chapter 9. User Guide

SCOT Documentation, Release 3.8.1

Latitude/Longitude In the form of -120.093 +100.234
CVE SCOT will detect CVE names in the form of “CVE-YYY Y-XXXX”

CIDR SCOT will detect CIDR blocks in the form of X.Y.Z.0/A, where A is 0 through 32. As an added benefit, SCOT
will also link ip address entities that are in that CIDR block to this entity as well.

9.12.2 Building Additional Entity Types

The primary tool for entity extraction is the Perl module Scot::Extractor::Regex Additional regular expression may be
added to this module to extract additional entities.

Another way to add additional Regexes is to add them to your scot.cfg.pl. Add a key “entity_regexes” to the cfg file.
This array of items will be added to the Regex module at server start time.

The format of the regex item is:

{

type => "name_of_the_entity",
regex => gr{ regex_here 1},
order => number, # lower numbers get precidence over higher

9.13 Permissions

The SCOT security model is a group based access control. Top level “things” like alertgroups, events, incidents, guides
and intel have a attribute called “groups.” The groups attribute an object of the form:

group: {
read: ['groupl', 'groupz2'],
modify: ['groupl']

}

As you would imagine the read attribute lists the groups that are allowed to read this “thing.” Similarly, the modify
field lists the groups that can modify the “thing.” When an Entry is created for this “thing,” unless expressly set, the
permissions of the entry will default to this set of permissions.

Somewhat surprisingly, a subset of data about a thing, namely the details in the “list view” are viewable by everyone
regardless of group membership. The primary reason for this is to allow teammates to see that an alert or an event
exists. If that teammate is not in the proper group membership, SCOT will inform them, and the teammate can inquire
with his team administrator about joining that group. We feel that the small risk of data “leakage” is outweighed by
the benefit of the team being able to discover events that they may be able to contribute to.

9.13.1 Default Groups and Owners

Default groups are set in the /opt/scot/etc/scot_env.cfg file. The default owner is also set in this file.

9.13.2 Admin Group

The admin group name is also defined in the /opt/scot/etc/scot_env.cfg file. Members of this group have “root” powers
and can change ownerships, and read and modify group settings.

9.13. Permissions 53

SCOT Documentation, Release 3.8.1

9.13.3 Note about Group Names

If you are using LDAP to manage group membership, and your team members have large sets of groups they belong
to, you can run into a limit in the number of characters returned from LDAP. This sometimes truncates the grouplist
in such a way that the SCOT group may not be returned.

To help avoid this, SCOT filters the LDAP query looking for a common string in all SCOT groups. By default this is
“wg-scot” but can be changed in the /opt/scot/etc/ldap.cfg file. The line:

’filter => ' (| (cn=wg-scotx))'

can be changed to whatever naming convention you decide upon.

9.14 HotKeys

The following hotkeys are supported:

f: Toggle full screen mode when a detail section is open

t: Toggle flair on/off

o: This will open all alerts within the alertgroup when in the alertgroup list view
—as your focus.

c: This will close all alerts within the alertgroup when in the alertgroup list view_
—as your focus.

j: This will select one row down within the list view.

k: This will select one row up within the list view.

esc: This will close the entity pop-up window.

9.15 Posting a global notificaton:

A global notification can be posted to all users by navigating to:

’https://<scot instance>/#/wall

Note that only raw text will be displayed.

54 Chapter 9. User Guide

cHAaPTER 10

Administration Guide

10.1 Backup

SCOT supports on-demand and scheduled backups. The backup script is:

’/opt/scot/bin/backup.pl

and will back up the SCOT’s mongo database and the ElasticSearch collections. The backup is a gzipped tar file and
will be stored in /opt/scotbackup. Moving these backups to another system is left as an exercise to the admin. By
default, the last 7 days of backups are kept in /opt/scotbackup and files older than 7 days are removed.

10.1.1 Manual Backup

I get it, you don’t trust some fancy script to back up. Here’s what is going on behind the scenes.
1. Back up the mongo database with the “mongodump” command.
$ cd /directory/with/space $ mongodump —db scot-prod $ tar czvf /another/dir/scot-prod.tgz ./dump
2. Use unix tools to copy SCOT config in /opt/scot/etc
3. ElasticSearch backup is more involved:

##. if you have never backed up elastic, you will need to create a repo:

curl -XPUT localhost:9200/_snapshot/scot_backup -d '/{
"scot_backup": {

"type": "fS",
"settings: {
"location": "/opt/esback"

\
\
\
\
| "compress": "true",
\
\
\
\

} U

55

SCOT Documentation, Release 3.8.1

##. if you have already backup up once before, remove any conflicting snapshot (or use different snapshot
name):

’$ curl —-XDELETE localhost:9200/_snapshot/scot_backub/snapshot_1

##. Create the Snapshot:

’$ curl -XPUT localhost:9200/_snapshot/scot_backup/snapshot_1

##. Check on status:

’$ curl —-XGET localhost:9200/_snapshot/scot_backup/_all

##. When complete, use tar to back up /opt/esback:

’$ tar czvf /home/scot/esback.tgz /opt/esback

##. store scot-prod.tgz and esback.tgz in a safe place.

10.2 Restore

Extract the timestamped SCOT backup tar file:

’tar xzvEf scotback.201701211832.tgz

This will create a directory “./dump/scot-prod”. Restore the MongoDB with:

’mongorestore -—dropdatabase --db scot-prod ./dump/scot-prod

10.2.1 Manual Restore

1. Restore Mongo:

##. remove existing scot-prod database:

$ mongo scot-prod < /opt/scot/etc/database/reset.js

##. extract scot-prod.tgz::

$ cd /home/scot

$ tar xzvf /tmp/scot-prod.tgz

$ cd dump

$ mongorestore —--db=scot-prod .

1. Restore configs by copying backup of /opt/scot/etc/ directory
2. Restore ElasticSearch

##. Close ElasticSearch indexes that are active.:

$ curl -XPOST localhost:9200/scot/_close

##. Remove existing contents of /opt/esback:

56 Chapter 10. Administration Guide

SCOT Documentation, Release 3.8.1

$ rm -rf /opt/esback/x*

##. extract esback.tgz:

$ cd /opt/esback
$ tar xzvf /tmp/esback.tgz

##. Make sure that /etc/elasticsearch/elasticsearch.yml has the following:

repo.path: ['/opt/esback']
(restart es if you have to make a change to the yml file

##. Create the “scot_backup” repo if it doesn’t exist (see above)
##. curl -XPOST localhost:9200/_snapshot/scot_backup/snapsot_1/_restore

3. Finally, restart scot.:

’# service scot restart

10.3 SSL Certs

The initial install of SCOT will use self-signed SSL Certs. Please update these certs as soon as possible.

10.4 GeolP

SCOT use the MaxMind GEOIP2 libraries and databases for geo location. Please see the MaxMind website for details
on how to update the database files.

10.5 Upgrading

Pull or Clone the latest from github (https://github.com/sandialabs/scot). CD into the downloaded directory, run:

’./install.sh -s

You probably want to do this when your analysts are not very busy.

10.6 CRON Entries

If you are using /opt/scot/bin/alert.pl to import events you will need a crontab entry like:

x/5 % % % % /opt/scot/bin/alert.pl

To automate your backups:

’O 3,12,20 = %= » /opt/scot/bin/backup.pl

10.3. SSL Certs 57

https://github.com/sandialabs/scot

SCOT Documentation, Release 3.8.1

10.7 Daemons

A properly functioning SCOT has the following services running:
¢ ActiveMQ
* MongoDB
* Apache2
* Scot
* scfd (scot flairing daemon)
* scrfd (scot reflairing daemon)
* scepd (scot elastic push daemon)

Depending on the Linux version, these will have init style startup scripts or systemd style entries.

10.8 Logging

SCOT is a prolific logger. All logs are stored in /var/log/scot. It is highly recommended to set up logrotate to avoid
filling you disk. Create a /etc/logrotate.d/scot like:

/var/log/scot.*.log {
daily
missingok
rotate 5
compress
notifempty
copytruncate
}
/var/log/error.*.log {
daily
missingok
rotate 5
compress
notifempty

10.9 Manual Password Reset for Local Auth

Let’s say you forgot the admin password, what to do?
1. Run /opt/scot/bin/passwd.pl

$ /opt/scot/bin/passwd.pl Enter New Admin Password : * Reenter Admin Password : * {X-
PBKDF2}HMACSHA2+512: AAAnEA:2/0QYInzjibzZWoCs2aPv:KAZIhhNUgPBw4M7Z0OVU1/2yT/PO7FRe2bhacBw6J6rudjw

2. Enter mongodb shell and issue the following:

$ mongo scot-prod <enter> > db.user.update({username:”admin”},{ $set: { hash:* { X-
PBKDF2}HMACSHA2+512: AAAnEA:2/0QYInzjibzZWoCs2aPv:KAZIhhNUgPBw4M7Z0VU1/2yT/PO7FRe2bhacBw6J6rudjw

3. Now you (admin) will be able to log in via Local Auth using the password you entered.

58 Chapter 10. Administration Guide

cHAPTER 11

Developing For SCOT

11.1 SCOT Architecture

overview of the puzzle pieces go here

11.2 SCOT Directory Map

bin/ scripts, executables that run stand alone (not part of the webservice) Ex: bots, import scripts, export scripts, etc.

docs/ text files that form documentation for SCOT
etc/ configuration files for Scot go here
etesre/ starting templates for your config files.
lib/ Perl library Hierarchy
Scot.pm - the top level mojolicious application library containing route info
Scot/ the top level of the Scot:: modules
Bot/ modules for use by scot bots
Controller/ modules for handling routes defined in Scot.pm
Model/ modules describing the data model for Scot data types
Util/ authentication, database, and other general utility modules
public/ Static served files by mojolicious
css/ css files for scot, and frameworks
img/ images used by SCOT
fonts/ Any fonts used by the CSS go here

lib/ javascript 3rd party libraries

59

SCOT Documentation, Release 3.8.1

angular/ angular libraries go here
bootstrap/ bootstrap stuff
Jjquery/ jquery stuff
js/ javascript that we create for scot including react components
api/ api documentation
docs/ online documentation
script/ usually holds the mojolicious startup script
t/ tests, tests, tests of mojolicious back end

templates/ templates used for rendering data that was passed through mojolicious
11.3 SCOT REST API
SCOT API Documentation.

11.3.1 SCOT get API

1. Retrieve one “thing” when you know the id:

/scot/api/v2/event/123
output:

JSON object representing event 123

2. Retrieve list of “things”:

/scot/api/v2/event
output

{
queryRecordCount: 50,
totalRecordCount: 10060,
records: [
{ event Jjson object 1 1},

3. Retrieve list of “things” based on time range:

’/scot/api/vZ/event?created=1472244135&created=1472244137

4. Retrieve list of “things” based on string match:

’/scot/api/vZ/event?subject=Symnatic

5. Retrieve list of “things” base on Numerical conditions

a. matching a single number:

60 Chapter 11

. Developing For SCOT

/api/index.html

SCOT Documentation, Release 3.8.1

/scot/api/v2/event?views=2

output: events with two views

b. matching a set of numbers:

/scot/api/v2/event?entry_count=2&entry_count=4&entry_count=6

output: events with an entry_count of 2, 4, or 6

c. matching everything but a number:

/scot/api/v2/event?views=!1

output: events with views not equal to 1

d. matching everyting but a set of numbers:

/scot/api/v2/event?views=!1l&views=!2&views=!3

output: events with views not equal to 1,2, or 3.
(note: 1if ! appears in any element, all are treated as if they are !

e. matching an expression:

/scot/api/v2/event?views=4<x<8
/scot/api/v2/event?views=4<=x<8
/scot/api/v2/event?views=4<=x<=8
/scot/api/v2/event?views=4<x<=8
/scot/api/v2/event?views=9>x>=2

output: events with views (represented by x) matching the expression
syntax notes: the expression must be of the form some number of digit,
followed immediately by one of the following operands: < <= > >=, the
letter lower case x (which represents the column name) followed
immediately by the comparison operands, and finally followed
immediately by some numbe of digits.

1. Retrieve list of “things” based on Set Fields like “tag” or “source”:

/scot/api/v2/event?tag=email&tag=malwarestag=!false_positive

output: list of evens with tags email and malware but not containing

the tag false_positive

11.3.2 SCOT post API

1. Create an Alertgroup containing several alertgroups:
curl -XPOST /scot/api/v2/alertgroup -d ‘{

“message_id”: ‘112233445566778899aabbccddeeff’, “subject”: “Detection of Bad Stuff”,
“data”: [

{ “columnl1”: “datall”, “column2”: “datal2”, “column3”: “datal3” }, { “column2’:
“data21”, “column2”: “data22”, “column3”: “data23” }, { “column3”: “data31”, “col-
umn2”: “data32”, “column3”: “data33” },

11.3. SCOT REST API 61

SCOT Documentation, Release 3.8.1

], “tag”: [‘tagl’,tag2’ tag3’], “source”: [‘sourcel’], columns: [‘columnl’, ‘column2’, ‘col-
umn3’ |,

} 9
2. Create an Event:
curl -XPOST /scot/api/v2/event -d ‘{

9,

“subject”: “Test Event”, “source”: [“Orchestration” |, “tag”: [“tagl”, “tag2”], “status”: “open”,
“groups”: [

read: [“scot-group”], modify: [“scot-group],

} 9
3. Create an Entry attached to a known event:

curl -XPOST /scot/api/v2/entry -d’{

9, < 99,

“target_id”: 123 “target_type”: “event”, “body”: “any text/html here”,

11.3.3 SCOT put API

1. Update and event status:

curl —-XPUT /scot/api/v2/event/123 —-d '{
"status": "closed"

} i

11.3.4 SCOT delete API

1. Delete and entry:

’curl -XDELETE /scot/api/v2/entry/12345

11.4 SCOT Event Queue

SCOT uses a message queue to publish events that have occurred. This allows your process to subscribe to be asyn-
cronously updated and to take actions on these event. SCOT uses ActiveMQ, it gets the job done and just about every
language under the sun has a way to interface with it.

The message format is:

{

guid: "unique_guid_string",

action: "action_string",

data: {
type: "type_of_data_structure",
id: integer_id_of_data,
who: username,

62 Chapter 11. Developing For SCOT

SCOT Documentation, Release 3.8.1

unique_guid_string is a requirement of the STOMP protocol and is generated

action_string is a member of the following: * “created” = something was created * “updated” = some-
thing was updated * “deleted” = something was deleted * “viewed” = something was viewed *
“message” = send a message to a subscriber

type
describes the data type that was operated on and is one of:
* alert
e alertgroup
* entry
* event
* incident
* intel
or in the case of a “message” it can be any string that your client is listening for.
id is an integer id for the “type” above. if sending a message, this could be the an epoch time.

data is a json structure that you are free to put stuff in.

11.5 SCOT Server

will discuss how to work in the Perl base server. Perldocs will be linked here as well.

11.6 SCOT Ul

SCOT’S front end is primarily developed using React JS. See https://facebook.github.io/react/ to read more about it.
pubdev/ Contains files necessary to modify the React-based front end

Note: Not all of the front end of SCOT is developed in React. Currently, the Incident Handler calendar and adminis-
tration pages are written using jQuery and HTML, without React.

SCOT has been written using the JSX format. See https://facebook.github.io/react/docs/introducing-jsx.html to read
more about it.

JSX Libraries Most libraries that the SCOT JSX components (found in /pub-
dev/jsdev/react_components/) rely on are found in /pubdev/node_modules and can be in-
stalled/updated using npm.

JSX Compiling Compiling the JSX files into a single javascript file is done by using Gulp. The file that
specifies the compiling directories is /pubdev/gulpfile.js. The final file that is ultimately compiled
and used is /public/scot-3.5.js

JSX Dev If you would like to contribute to, or modify the front end of SCOT, you can do so by creat-
ing/modifying files in /pubdev/ and then compile your changes using gulp.

Final HTML/JS The files ultimately used to display and control the front end are found in /public/

11.5. SCOT Server 63

https://facebook.github.io/react/
https://facebook.github.io/react/docs/introducing-jsx.html

SCOT Documentation, Release 3.8.1

64 Chapter 11. Developing For SCOT

cHAPTER 12

Signatures

12.1 Signature

Signatures are used to integrate the version control of signatures within 3rd party mitigation tools (firewalls, IDS, etc.)
while being managed by SCOT as a central repository. Signature’s have the same list view as other “things” within
SCOT, but they have a slightly modified detail view.

The detail view of signatures contain metadata editing, where you can modify a description, signature type (yara,
ids, firewall, etc.), production and quality signature body versions, signature group that the signature belongs in, and
signature options (written in JSON format). The final new item within the detail view is the Signature body editor.
This editor should be used to add in the signature’s that will be used in the 3rd party tool. The output of the body is
converted to a string format, which can then be ingested by the other tool.

Below these new sections, the entries that are found in other “things” still exist.

12.2 Signature Metadata

_static/signaturemeftadata.png

Signatures contain their own unique metadata that can be used for version control, describing the signature, and
grouping the signatures. The metadata contains the following options:

Description Describes the signature

65

SCOT Documentation, Release 3.8.1

Type Defines the type of signature being created (yara, firewall, ids, etc.)

Production Signature Body Version Declares the version of the signature body to be used in production
Quality Signature Body Version Declares the version of the signature body to be used in quality
Signature Group Declares a group name if signature will be grouped together.

Signature Options This is the first editor window you see that accepts JSON formatted data that can be
used to pass on specific options for the signature being applied.

Signature Body This is the second and larger editor window you will see that will pass along the contents
as a string to the SCOT server that can then be used by the tool ingesting the signature. The signature
body editor contains a few options - Editor Theme, Language Handler, Keyboard Handler, Signature
Body Version, and the following buttons - Create new version, Create new version using this base,
updating displayed version.

12.2.1 Signature Body Options

_static/signaturebody.png

Note: The Editor Theme, Language Handler, and Keyboard Handler all save their settings in a cookie file. If you
change these settings, they will persist until you change them again or clear your browser’s cookies.

Editor Theme You can select the theme you prefer to use for your code editor. There are a variety of
color options depending on your color tastes

66 Chapter 12. Signatures

SCOT Documentation, Release 3.8.1

Language Handler You can select the language of the signature that you are writing, or one that closely
resembles it

Keyboard Handler You can select none, vim, or emacs if you prefer a keyboard handler
Signature Body Version You can select the version you would like to view here.

Create new version This button will empty the editor and allow editing within the editor so you can
create a new signature body.Any other signature body’s created will remain attached to this Signature
to be viewed/edited. Note that this WILL NOT make the new signature body automatically the
“qual/prod” versions, as that must be done manually in the metadata section.

Create new version using this base This button will also create a new signature body version, but it will
start the editor off with whatever contents are already in the editor based on the version selected.

Update displayed version This button will allow editing of the version selected. It will not create a new
version of the signature body, but instead just update the version selected.

12.2. Signature Metadata

67

SCOT Documentation, Release 3.8.1

68 Chapter 12. Signatures

cHAPTER 13

REVL Visualization Guide

13.1 Read-Eval-Viz-Loop

REVL is a tool for quickly reorganizing awkward data formats so that you can inspect the data and use a variety of
visualizations to find interesting relationships and properties that would be hard to spot otherwise. It works in a way
similar to a powerful command line in that you get data on one end, run it through a series of transformations to pick
out the bits you’re interested in and stick them to other bits, finally ending up with just the interesting parts in a format
that’s easy to comprehend or ship off to a visualization tool (of which many are included). Internally, REVL uses a
result monad to do the value handling, so you’re actually working with a data structure instead of raw text. In this
case, this makes it quite a bit more convenient to use than the standard command line.

13.2 Getting Started

When you open SCOT, click the Visualization link in the navbar. This will open REVL, which will look like
a big blank screen with a little command prompt at the bottom. You will interact with the system by typing strings
of commands at the prompt and observing the results either in the text output area (just above the prompt) or in the
visualization area (the bulk of the page, which is blank white at this point).

13.3 Interacting with REVL

To Get some help click in the prompt and type help (and press Enter).

Just above the prompt, you will see a text output area. You can drag the top of this area to resize it, so drag it up now to
see the REVL default help message. This message gives a little background and lists all currently loaded commands.
If you can’t remember the name of something, you should be able to jog your memory by looking it up here.

Now type help map at the prompt. This will display the command-specific help for the map command, which is
something you will be using a /lot.

69

SCOT Documentation, Release 3.8.1

REVL tries to be convenient - if it recognizes the first word you type in a command segment to be a command, it treats
it as one. If not, it will evaluate whatever you type in the context of the shell, which includes variable definitions,
locally defined helper functions, and the entire API behind the command system. The syntax is coffeescript, which
you can find out more about at [[http://coffeescript.org{]}{[}CoffeeScript.org]].

Type:

[1..10]

at the prompt and hit Enter. You will see the result of evaluating that coffeescript value, which is
(1,2,3,4,5,6,7,8,9,10]

This particular trick (generating a list of integers) is surprisingly useful for seeding queries later on. Keep it in mind
when you want to do something like look at all of the events that came in between two other events (you can sequence
their id fields using this list, eg [1044..1102]).

Now hit the up arrow to repeat the last command, then add to the back of it until you get this (the thing right after the
list is a single backslash character):

[1..10]1 \ (n)->n*n

After you hit enter, you’ll see a list of the squares of the integers from the fist list: [1,4,9,16,25,36,49, 64,
81,10017. You just used the map command. You could also have explicitly written out the map name in front of the
function definition, but this particular command is so common that it’s implied after a backslash if no other command
is specified.

Commands are chained together using the backslash (°’) character. Normally the pipe (‘I’) would have been used, but
in this case it was just much simpler and more reliable to use the backslash because the pipe is an important character
in user-defined coffeescript code, and it would have led to significant ambiguity in parsing the commands.

13.4 Using REVL with SCOT data

Now we can do something interesting. Let’s get all the entities with ids from 10000 to 10100:

’entity offset:10000,1limit:101

This command will take a few seconds to complete, and when it does you’ll see a list of entities in the text output.
However, our plan was foiled - our first id is not 10000, it’s something else. If we want to actually get entities with ids
10000 to 10100, we’ll need to specify those ids. Let’s do that:

[10000..10100]1 \ (n)->API.entity id:n

After you press Enter and wait, you’ll find that you got a list of 100 somethings back, but they aren’t entities. REVL
uses asynchronous calls for the API to make things a little faster. This is hidden when you use the top level commands
because the shell knows to wait when the result is a promise, but when you make calls directly to the API and embed
them in another data structure, you have to be more explicit. Let’s go ahead and tell it to wait on those results:

[10000..10100] \ (n)->API.entity id:n \ wait

The wait command will scan through the data it gets from the pipeline and replace all of the promises with the
fulfillments of those promises as they come in. It also has an optional timeout which will cause the wait to stop if it
has been more than that long since an update was received. The default timeout is 60 seconds, and you can change
it by simply specifying a different number as an argument to the wait command. This argument is a full coffeescript
value, so you can use variables and functions if you need to for some reason.

70 Chapter 13. REVL Visualization Guide

http://coffeescript.org{]}{[}CoffeeScript.org

SCOT Documentation, Release 3.8.1

As you wait for the entities to come down, notice that there is a progress bar on top of the command line to let you
know something is happening in the background, and the fraction of finished to total promises is displayed at the right
end of the command line.

When it’s all said and done, you should have a list of 101 entities in your text window.

13.5 Make a bar chart

Let’s take those entities and see how they’re distributed by type. To do that, we’ll fetch the entities, then pick out the
type field, group them by that field, and make a chart that has a bar for each type and shows the number of instances of
that type. First, let’s get the entities again and stash them so that we don’t have to wait for them to download at each
step:

’[10000..101001 \ (n)->API.entity id:n \ wait \ store ents

The store command takes a variable name and stores the result of the preceding command in the scope under that
name. Now you can access that list of entities using the name ent s from anywhere in future commands. First, let’s
strip out all of the data we don’t care about from them:

ents \ (e)->e.type

Now you should see a list of the type fields from each entity. Next we’ll group them according to that field:

’ents \ (e)->e.type \ group (x)->x

This command uses the group command, which takes a function and returns an object. The function should return a
name for its input that specifies what group it belongs in. In this case, all we have are names, so we just tell it to return
its input unchanged (that’s what the (x) —>x means - a coffeescript identity function).

The output of the group command was an object with a key for each group name, and the list of things in that group
for the value. Now we’re going to replace the lists with their lengths, which will give us a nice data structure to pass
to the barchart visualization primitive:

’ents \ (e)->e.type \ group (x)->x \ (ls)->1ls.length

This uses the map command to iterate over the keys of the object returned by group and replace each value by its
length. You should now have an object with a few keys, each with a number as its value. This is exactly the format we
need for a bar chart, so let’s see what we get:

ents \ (e)->e.type \ group (x)->x \ (ls)->1s.length \ barchart

You should now see a chart showing the relative frequencies of the different entity types in your set. If your text area is
covering the chart, you can double click the top of it to auto-minimize. It will remember the last setting for the height,
so if you double click it again it will go back to where it was.

13.6 Event Timing

Next we’ll use a dot chart to look at the timing of a set of alerts coming in within an alert group. First, let’s get the
alerts:

’alertgroup: id:1512214,sub:'alert’

After this comes in you should have a list of alerts. There’s a lot of data we don’t really care about there, so let’s tell
the server to only send what’s important:

13.5. Make a bar chart 71

SCOT Documentation, Release 3.8.1

’alertgroup: 1id:1512214,sub:'alert',columns: ['id', "when"']

This filters the data coming in down to just the id and when columns, which suits our needs for this example. We can
store that data for future reference:

’alertgroup: 1d:1512214,sub:'alert',columns: ['id', "data'] \ store albl

We’re going to make a dot chart with time on the horizontal axis and item number on the vertical (vertical axis is just
here to separate things for visibility). We need to pull out the time value for each and pair it with its position in the list:

al51 \ (alert,pos)->[pos,alert.data._time]

The map function implicitly passes the index of the current element to the handler function (or the key if it’s an
object). We just use the object’s list position to get a vertical coordinate for it. Unfortunately, this timestamp is in
human-readable format, which makes it a pain to use. We can parse it using the Strings function though:

al51l \ (r)->r.data._time \
pick Strings.pat.hms \
(1s)->(map 1ls[1l..], (s,1)->(60%*(2-1))* (parseInt s)).reduce (a,b)->atb

This takes the alerts and uses the Strings predefined hms (hours:minutes:seconds) pattern to parse just the clock time
from the timestamp. The pattern returns the matched string along with its captured substrings, which in this case
gives us the hour, minute, and second. The function mapped over it just converts this into a number of seconds since
midnight. Coffeescript has a x* operator for exponentiation, if you’re trying to parse out how that function works.
Now we have a list of timestamps, so let’s convert it to a list of coordinate pairs that dot chart can use:

al51 \ (r)->r.data._time \
pick Strings.pat.hms \

(1s)—>(map 1ls[l..],(s,1)->(60%*x(2-1))* (parselInt s)) .reduce (a,b)->atb \
(n,i)->[n, il \
dotchart

Whoops, looks like the timing data is all over the map! We need to sort our timestamps in ascending order since they
didn’t come that way from the server:

al51l \ (r)->r.data._time \
pick Strings.pat.hms \

(1s)—>(map 1s[1l..],(s,1i)->(60%x(2-1)) (parselInt s)) .reduce (a,b)->at+tb \
sort \

(n,i)->[n,i] \

dotchart

sort does just what you’d think. You can optionally pass it a comparison function, which should return -1, 0, or 1
depending on whether the first argument is less, equal, or greater than the second. Note that javascript has some very
weird ideas about ordering, so if you want to get the expected sort order for normal data (numbers, strings, etc.) REVL
provides a sort function in the Utils module called Utils.smartcmp. This basically says numbers go in numeric order
and strings go in alphabetic order. In javascript by default, numbers go in alphabetic order (!). Running this command
we can now see a nice progression of alerts that ended up in this alert group.

13.7 Other interesting command examples

Here are some other commands you might want to play with to get a feel for the system. All of the basic commands
have documentation with examples, so if you need to look something up to see how it works start with the help system.

72 Chapter 13. REVL Visualization Guide

SCOT Documentation, Release 3.8.1

* Entity Frequencies over time

Query 1000 entries, pull the entities for each of them, group them by type, and create a barchart to show the
relative frequency of each type of entity:

$ [10000...110007 \
(n) ->API.entry {id:n,sub:'entity'} \
wait \
(r)->Struct.tolist (Struct.map r, (v)->v.type) \
flatten \
group (1s)->1s[1] \
(1s)->1s.length \
barchart

* Examine event timing over long periods

Query 500 events, extract the creation timestamp, sort them in ascending order, rebase the time to show time delta in
minutes from start of record, and create a dot chart to show the timing of clusters of events and highlight gaps in the
record:

$ event 1limit:500 \
(e) —>e.created \
sort \
into (ls)->map 1ls, (n)->(n-1s[0])/60000.0 \
(n,1)->[n,i] \
dotchart

* Look at sequence of alerts in alertgroup:

$ alertgroup 1d:1512214,1imit:100,sub:'alert' \
(r)->r.data._time \
pick Strings.pat.hms \
(ls)->(map 1ls[l..], (s,1)->(60%%(2-1)) % (parselInt s)).reduce (a,b)->atb \
sort \
(n,i)->[n,1] \
dotchart

» Network connections between emails mentioned together in an alert for an alert group

Get the alerts for alertgroup 1512214, concatenate all of the strings in the data field of each, pick out all of the email
addresses in the resulting strings, generate pairs from all emails that were in the same alert, and make a force-directed
graph from the resulting structure.:

$ alertgroup 1d:1512214,1imit:100,sub:'alert' \
(r)->(squash (Struct.tolist r.data)).join ' ' \
(s)->Strings.pick Strings.pat.email, s \
(1s)->1ls.map (m)->m[0] \
(ls)->cmb 1s,2 \
flatten \
forcegraph

* Association matrix of emails from one alertgroup

This is a very heavy computation, but it eventually finishes. Need to look into ways to optimize this to make it more
convenient, but the filling out of the table really explodes the size of the data set.:

$ alertgroup 1d:1512214,1imit:100,sub:'alert' \
(r)->(squash (Struct.tolist r.data)).join ' '\
(s)->Strings.pick Strings.pat.email, s \

(continues on next page)

13.7. Other interesting command examples 73

SCOT Documentation, Release 3.8.1

(continued from previous page)

(1s)—>1ls.map (m)->m[0] \

(1s)->cmb 1s,2 \

flatten \

nest (n)->n \

(row)->Struct.map row, (col)->col.$.length \

tabulate {} \

grid \

eachpoly (p)->if p.input == {} then p.color='#000' else p.color=Utils.heatColor p.
—input,10 \

draw

* Draw a treemap from an Nspace:

$ [1..100] \

foldl new Nspace (s,pt) -> s.insert pt,[['x',Math.random ()], ['y"',Math.
—~random()]]; s \

into (s)->s.subdivide () \

into (sp)->sp.leaves () \

(1)->1.bounds \

(bnd) —=> zip bnd \

(pts) —>[[pts[0][0],pts[0][1]], [pts[0][0],pts[1][1]], [Pts[1][O0],pts[1][1]],
< [pts[1]1[0],pts[0] 11111 \
(pts)—>(polygon pts).scale 200 \

into (polys)->{polygons: polys} \
draw

» Network showing relationship between events and entities

Query an event, find all the entities associated with it, then find all the events associated with those entities. Make
links accordingly, then display as a force-directed graph. Mousing over the network nodes will display the entity name
or event id number depending on what kind of node it is.:

$ event i1d:10982,sub:'entity' \

(e, k)—>[{id:e.id, name:k},10982] \

tolist \

(1s)—->1s[1]1 \

filter (ls)->1s[0].id not in [4802,97248,19,533065,97249] \

(1s)-> [[[1s[0] .name,1s[1]]], (API.entity sub:'event',id:1s[0].id).map (e)->([ev.
<»id, 1s[0] .name]) for ev in e] \

wait \

flatten \

flatten \

forcegraph

» Barchart of event count for each entity

Fetch the entities associated with an event, then fetch all of the events for each entity and make a barchart that
shows how many events are associated to each entity.:

$ event i1d:10982,sub:'entity' \
(ent)->(API.entity id:ent.id, sub:'event',columns:['id']).map (ls)->1ls.length \
wait \
filter (n)->n>20 \
barchart

74 Chapter 13. REVL Visualization Guide

cHAPTER 14

Docker for SCOT

Updated - 12/10/2019

14.1 Table of Contents

¢ Overview

Docker-SCOT containers
* Managing the containers
* Configuration

FAQ / Common Issues

14.1.1 Overview

SCOT’s primary deployment technology is now via docker.
IMPORTANT

Backup your database via the backup.pl in the /opt/scot/bin/ directory before upgrading to the docker version of SCOT.
If you are upgrading, you will also need to turn off all services that the older version of SCOT uses such as Apache,
Activemq, Mongodb, ElasticSearch and SCOT (i.e. sudo service stop scot). Also as far as upgrading, we have not
tested upgrading from any version before 3.4. Upgrade from versions prior to 3.4 to 3.5 first before upgrading to
Docker-SCOT.

14.1.2 SCOT containers

SCOT is comprised of the following services:
* SCOT - SCOT Application and associated API
* MongoDB - Storage for SCOT

75

SCOT Documentation, Release 3.8.1

* ActiveMQ - Message broker for servies interested in SCOT data
» Apache - Proxy for traffic between some services
« ElasticSearch - Search engine

¢ Flair Engine - ‘Entities’ found within SCOT are highlighted with a count of the number of times SCOT has
‘seen’ them before

¢ Game Engine - Used for homepage statistics
* Stretch - Used for adding data to ElasticSearch

e Mail - Used as a reslient mechanism for importing data to SCOT (not enabled by default - See configuration
section)

¢ Reflair Similar to flair

14.1.3 Docker Installation

To get started, refer to the Docker Community Edition documentation for installing the Docker engine on your respec-
tive OS: https://docs.docker.com/engine/installation/

Next, Docker-SCOT relies on docker-compose to build, run and manage services. Docker-compose does not ship
with Docker engine, so you will need to refer to the following documentation for installation of Docker-Compose:
https://docs.docker.com/compose/install/

14.1.4 SCOT Installation

Note These steps will most likely change slightly in 2019 as the SCOT team will be working on making the install
script more robust, but easier to use so you can begin using (and even developing) with SCOT quickly.

There are two methods for getting started with SCOT. Run the SCOT/restart-build-deploy.sh script (will be promopted
to enter sudo credentials) and follow the on screen prompts for either.

1. Quick mode (fast) - this mode will pull all necessary docker images from from Dockerhub (preconfigured). As
for 12/10/20109, this is the preferred method for SCOT installation. If you need to enable LDAP auth, configure
TLS certificates, or other changes, these can be done in this mode but with volume mounts and possibly some
manipulation of compose files / configs.

2. Custom Mode (slow) - This mode should only be chosen if you are wanting to rebuild docker images for further
customization.

14.1.5 Managing the containers

The restart-build-deploy.sh script will handle stopping and then restarting containers automaticaly. However if you
need more granular control run the following:

To stop Docker-SCOT:

sudo docker—compose stop

To start a specific service:

sudo docker-compose up —--build name_of_service

To stop a specific service:

76 Chapter 14. Docker for SCOT

https://docs.docker.com/engine/installation/
https://docs.docker.com/compose/install/

SCOT Documentation, Release 3.8.1

sudo docker-compose stop name_of_of_service

To restart a specific service and build in any particular changes you have made to source:

sudo docker-compose up -d —-build name_of_service

14.1.6 Configuration

SCOT’s implementation of docker relies on the docker-compose.yml or docker-compose-custom.yml file to define
the execution of the services, the DockerFiles that define the dependencies for each container, and two directories
(docker-scripts & docker-configs).

docker-compose.yml

The docker-compose.yml references the prebuilt images from Dockerhub.
docker-compose-custom.yml

The docker-compose-custom.yml file will build the SCOT docker images from source.
docker-scripts

The docker-scripts directory contains scripts for backing up the data contained in MongoDB container and will even-
tually house other scripts that are similar.

The following scripts are currently supported:
1. /opt/scot/bin/restore_remote_scotdb.pl
2. opt/scot/bin/backup.pl

To execute one of the above scripts, simply connect to the scot container via:

sudo docker exec -1 -t —u scot scot /bin/bash

cd to /opt/scot/bin/

and run:

’./scriptexample.pl

Restoring a database
For any questions about backing up and restoring databases, please contact the SCOT development team.
docker-configs

The docker-configs directory contains modified config files, perl modules, scripts, etc. that allow SCOT to function
properly in a containerized environment. Most changes are references to localhost in the standard SCOT codebase
where we modify those addresses to reference the ip addresses on the scot_docker subnet.

MongoDB Default password

MongoDB default password (also used for logging in to SCOT if local auth is enabled (by default)), is:
* Username: admin
* Password: admin

Note: If by chance you ever go to wipe your mongo database and would like to start fresh, you would need to delete
the file /var/lib/mongodb/.mongodb_password_set.

Persisted Data

14.1. Table of Contents 77

SCOT Documentation, Release 3.8.1

You can view which data is being persisted by viewing the docker-compose.yml script and referring to the various
“Volumes’. With regard to MongoDB (where SCOT records are persisted), the data from mongodb is persisted via
nmaed volumes to /var/lib/docker/volumes/mongodb_data..

Mail

To begin using mail, you will need to uncomment the ‘mail” service in the docker-compose.yml file and also add any
of your organization’s mail configurations into the docker-configs/mail/alert.cfg.pl file.

LDAP

By default, LDAP configuration is not enabled in docker-configs/scot/scot.cfg.pl. To enable, simply uncomment
the LDAP configuration lines in docker-configs/scot/scot.cfg.pl and edit the necessary information to begin checking
LDAP for group membership / auth.

Custom SSL

Docker-SCOT’s Apache instance comes configured with a self-signed SSL cert baked into the container. However, if
you wish to use your own ceritifcates, do the following:

1. Remove the SSL cert creation lines from the Dockerfile-Apache file.

2. In docker-configs/apache/ directory, there is a scot-revproxy-Ubuntu.conf. Replace the following line:

’ServerName apache

with:

’Servername nameofyourhost

3. In the same file, replace the following lines:

SSLCertificateFile /etc/apache2/ssl/scot.crt
SSLCertificateKeyFile /etc/apache2/ssl/scot.key

with the path and name of the eventual location where you will map your certs to via a shared data volume. 4. Next,
as mentioned above, you need to pump your certs from your host machine into the container via a data volume (you
can also copy them into the container at build time via COPY directive). In order to map them in via a data volume,
add a new data volume under the apache service in the docker-compose.yml file. Eg.:

volumes:
- "/path/to/your/cert:/path/to/file/location/you/defined/in/step/3
- "/path/to/your/key:/path/to/file/location/you/defined/in/step/3

5. Re-run the restart-build-deploy.sh script and you should be set!

14.1.7 FAQ/ Common Issues

Common Issues

1. Apache frequently will throw an error on run time that the process is already running and will subequently die.
In the event this happens, simply re-run the script.

14.1.8 TODO

1. Complete backup and restore scripts in bash

2. Update docs - better examples

78 Chapter 14. Docker for SCOT

cHAPTER 15

Indicies and Tables

* genindex
* modindex

e search

79

SCOT Documentation, Release 3.8.1

80 Chapter 15. Indicies and Tables

Index

C

CIDR, 53
CVE, 53

D

Domain Names, 52

E

Email Addresses, 52

F

File Names, 52

H

Hashes, 52

IP Addresses,52

L

Latitude/Longitude, 53

81

	License
	Installing SCOT
	Important Update
	Minimum System Requirements
	System Preparation
	Ubuntu 14.04
	Ubuntu 16.04 and CENT 7

	install.sh Options
	Using install.sh to upgrade
	Configuration Files

	POST Install Procedures
	Migration
	SSL Certs
	Configuration Files
	scot.cfg.pl
	alert.cfg.pl
	flair.cfg.pl
	game.cfg.pl
	stretch.cfg.pl

	CRON Jobs

	Migration
	Save Your Old Database
	SCOT Feeding
	Email Ingest
	HTML Email

	REST interface

	Overview
	Philosophy
	Why Use SCOT
	Terminology
	IRT
	Alertgroups
	Alerts
	Events
	Entry
	Task
	Entity
	Flair
	Intel
	Guide
	Signature

	User Guide
	Views
	List View
	Detail View

	Alert
	Alert Details
	Events
	Event Grid View
	Event Detail View

	Incident
	Intel
	Guide
	Task
	Signature
	Tags
	Flair
	What the heck is Flair?
	The Process
	User Defined Entity

	Entities
	Entity Types
	Building Additional Entity Types

	Permissions
	Default Groups and Owners
	Admin Group
	Note about Group Names

	HotKeys
	Posting a global notificaton:

	Administration Guide
	Backup
	Manual Backup

	Restore
	Manual Restore

	SSL Certs
	GeoIP
	Upgrading
	CRON Entries
	Daemons
	Logging
	Manual Password Reset for Local Auth

	Developing For SCOT
	SCOT Architecture
	SCOT Directory Map
	SCOT REST API
	SCOT get API
	SCOT post API
	SCOT put API
	SCOT delete API

	SCOT Event Queue
	SCOT Server
	SCOT UI

	Signatures
	Signature
	Signature Metadata
	Signature Body Options

	REVL Visualization Guide
	Read-Eval-Viz-Loop
	Getting Started
	Interacting with REVL
	Using REVL with SCOT data
	Make a bar chart
	Event Timing
	Other interesting command examples

	Docker for SCOT
	Table of Contents
	Overview
	SCOT containers
	Docker Installation
	SCOT Installation
	Managing the containers
	Configuration
	FAQ / Common Issues
	TODO

	Indicies and Tables
	Index

